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ABSTRACT

Utilizing low grade heat sources such as geothermal, solar or waste heat has received a
high attention in recent years. A lot of research has discussed using Organic Rankine Cycle (ORC)
as subcritical or supercritical in power generation. However, very few studies extend their research
in utilizing ORC in other applications such as desalination. For reverse osmosis (RO) desalination,
which is considered a membrane technology, the use of supercritical-ORC in low grade heat
sources is more favorable than subcritical-ORC. Thus, studies of utilizing either subcritical-ORC
or supercritical-ORC for thermal desalination that use power and heat from Rankine cycle are rare
or have not been done yet. Thermal desalination technologies are dominant for desalination in the
Gulf Corporation Countries (GCC) and are getting more focus to treat high concentration feed and
provide drinking water due to shortage of clean water in the world.

This study proposes a novel system that combines a supercritical-ORC with multi-effect
desalination and mechanical vapor compressor (MED-MVC) for desalination using low grade heat
sources at temperatures less than 150 °C. A numerical model was developed, which was used to
conduct performance, exergy and economic analyses under various parameters such as: salinity of
the feed, temperature of motive steam and pressure of ORC. The proposed system was compared
with different MED combinations with respect to specific energy consumption and unit cost of

water produced.
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CHAPTER 1: INTRODUCTION

1.1 General Background

Clean drinking water availability is one of the most important issues today. According to
the United Nations World Water Development Report published in 2014 : Water and Energy, 47%
of world population will be living in areas of high water stress by 2030 and by 2025, 1.8 billion
people are expected to be living in countries or regions with absolute water scarcity, and two-thirds
of the world’s population could be living under water stressed conditions [1]. There are many
reasons for that, such as limited fresh water sources, increased annual demand of fresh water, and
the intensive energy needed for desalination making it less favorable for countries with limited
sources of fossil fuels.

Only 3 % of earth’s water is fresh water while the rest is saline and found in the oceans and
seas. About one third of the fresh water is stored underground that is not easily accessible, and a
large part in the form of ice covering mountainous regions, Antarctic and Arctic far away from the
population. Only 0.03% of earth’s water is usable by humans in the form of rivers and lakes that
is distributed unevenly on the earth as shown in Figure 1. The demand of fresh water has been
increasing annually by 5% and is currently 9,087 billion m®, 75% of which is dependent on

rainwater for agriculture [2].
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= Ocean (saline Water) = Jce Caps and Glaciers
= Underground Water = Fresh Surface Water (Lakes, Rivers)

Figure 1 Earth's water distribution by source.

The main reasons for the increasing demand of fresh water are the exponential population
and economic growth in industrial and agricultural businesses. According to the United Nations
World Water Development Report published in 2015: Water for a Sustainable World, water use
has been growing at more than twice the rate of population increase in the last century [3]. Stress
on fresh water resources is faced by developed and developing countries for domestic, agricultural,
and industrial uses. Figure 2 shows how fresh water has been used in developing and developed
countries. The Energy Information Agency (EIA) estimated that water consumption will be
increased up to 60% by 2040 [4]. The natural water cycle including surface and ground water,
estimated at a total volume of about 4,500 billion m?, will not meet the demand in 2030 which is
predicted to be 6,900 billion m? [5,6]. Desalination technologies can bridge the gap between

demand and availability of fresh water since the saline water is abundant and easily accessible.
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= Agricultrual = Industrial Demostic

11 8
10

8

World Developed Countries Developing Countries

Figure 2 Fresh water uses in developing, developed countries and the world.

Desalination, which is the process of removing dissolved salts from water, thus producing
water from seawater or brackish water, has the promise to face the challenge of limited of fresh
water. There are more than 18,400 desalination plants worldwide producing about 31.68 billion
md/year that represent 4.3% of the fresh water demand for domestic and industrial uses (not
including agriculture) [7]. The installed capacity of desalination has increased by about 10%
annually from 2010 to 2016 through the world based on Global Water Intelligence Report [8]. This
increase in the capacity includes desalination plants that treat brine water, with salinity greater than
50,000 (ppm); saline water, which has salinity 20,000-50,000 (ppm) and brackish water that has
salinity 500-2,000 (ppm). The desalination technology is desalting the seawater and provide water
within the limit of 500 ppm that defined by WHO (world Health Organization).

Desalination can be classified based on the process as either phase change or membrane
desalination, as depicted in Figure 3. In phase change desalination processes, the feed water is

heated and evaporated at saturation pressure to obtain salt free water vapor while the remaining

www.manharaa.com



concentrated brine is discharged. The product is of good quality and the process is suitable for high
salinity concentration. Multi-stages flash (MSF) and multi-effects desalination (MED) are
examples of phase change processes. Phase change processes account for about 40% of the
desalination market worldwide and more than 70% of desalination market treat feed with salinity
greater than 35,000 ppm. In membrane processes, seawater passes through a membrane by
applying high pressure in a reverse osmosis (RO) and or membrane distillation (MD) process to
collect desalinated water or by applying electrical potential in an electro—dialysis (ED) process to
extract the salt ions from seawater. Membrane desalination processes account more than 60% of

the desalination market worldwide as shown in Figure 4.

Desalination Technologies

V

Membrcme Process

Membrane
Desalination (MD)

Phase Change Process

Multi-stage flash (MSF)

Multi-effects

Electro-dialysis (ED) Desalination (MED)

Reverse Osmosis
(RO)

Figure 3 Classification of desalination technologies by process.

Vapor Compression

(VC)
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Desalination Technologies
Market Globally

ED Other
MED 3% 3%
8% \
MSF RO
26% 60%

Figure 4 Desalination technologies market in global.

Desalination processes require a huge amount of energy to separate the dissolved salts from
seawater as illustrated in Table 1. The total equivalent energy used in water sector that includes
pumping water and desalination was estimated by EIA at 120 million tons of oil equivalent (Mtoe).
About 60% of that required energy comes directly from electricity which was about 4% of
electricity net generation globally in 2015 where desalination accounted for 20% of the total energy
consumption that mainly came from fossil fuels [4,9]. The EIA estimated 60% of energy
consumption in the water sector in 2040 will be from desalination plants [4]. Due to the
environmental impact of using fossil fuels in desalination and limited access for many developing
and underdeveloped countries to fossil fuels, using solar energy and renewable energy is a valuable

option instead of fossil fuels since it is accessible worldwide and is a clean energy source.
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Table 1 Energy requirement and unit product cost for conventional desalination systems [10-18].

Specific thermal Specific Electricity Total Equivalent Specific Cost of
energy Consumption | Power Consumption | Energy Consumption Prggﬁ?t:on
(kWh/m?) (kwh/m?) (kwWh/m?) ($/m?)
Rever?eR g)smosis 0 4-7 4-7 0.64-1.98
Electr(oE-g;alysiS 0 2.6-55 2.6-55 0.6-1.05
Multi-(ii/tlzgg Flash 52-78 3-5 19-27 0.56-1.75
Desg?r:gt}ifiasED) 40-65 ho2 e poLs
c“gfﬁm's?r' (\K%Jcr) 0 7-12 7-12 0.89-2.48
Compressor (TVC) 63 1618 102 e

Solar energy is the most appropriate of all renewable energy options to compete with fossil
fuels for desalination since both heat and power can be utilized in desalination. According to a
detailed market analysis report of desalination by renewable energy, two-thirds of renewable
desalination installation in the world is powered by solar energy [19]. Solar energy can be used for
desalination by producing either the thermal energy or electricity via solar pond, flat plate
collector, evacuated tube collector, parabolic trough, solar dish, central receiver tower or
photovoltaic (PV) cells to drive the phase change or membrane processes. Solar desalination
systems are classified into two categories: direct and indirect collection systems. Direct collection
systems use solar energy to produce distillate directly in the solar collector, whereas indirect
collection systems have two subsystems: one for solar energy collection and the other for desalina-
tion as shown in Figure 5. Papapetrou et al. [19] studied the roadmap of implementing renewable
energy in desalination market with respect to the development status and capacity of production
as shown in Figure 6 that shows solar organic Rankine driven desalination system has the potential
for low capacity water production though it is in an early stage of research. The renewable energy

powered desalination accounts for less than 1% of total installed capacity in the desalination
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market, 62% based on RO and 43% powered by PV [19-21]. The costs of production for different
renewable energy powered desalination systems are shown in Figure 7. Solar driven MED is
estimated to be the lowest cost among all technologies although it is in an advanced stage of
research with small applications. For high capacity production, CSP-MED is recommended while

for small capacity, solar-MED is more favorable.

Solar Desalination Technologies

v l v

Indirect Direct
- >
Membrane Non- Membrane Solar Still
( HDH ]

i

FO RO
ED/EDR

i
:

Natural Vacuum <

Passive Vacuum <

Figure 5 Solar desalination technologies.

www.manharaa.com




SOLAR STILLS

SOLAR
PHOTOVOLTAIC-
REVERSE OSMOSIS
APPLICATIONS
WIND-REVERSE
SOLAR MULTI 10515
FFE

EFFECT
HUMIDIFICATION

WIND-VAPOUR
COMPRESSION
SOLAR
MEMBRANE
ADVANCED DESTILLATION
R&D
" CONCENTRADED
[G] SOLAR
a POWER-MULTI
o SOLAR ORGANIC EFFECT
[ RANKINE DISTILLATION
o CYCLE-REVERSE AVE-REVERSE
s 0SMOsIS g
coL 0OSMOSIS
BASIC o
RESEARCH b
(=]
TYPICAL CAPACITY RANGE
SOME SOME HUNDREDS THOUSANDS
LITRES CUBIC METERS OF CUBIC METERS OF CUBIC METERS
PER DAY PER DAY PER DAY PER DAY

Figure 6 Development status and capacity range of renewable energy driven desalination [19].

Wind-MVC
Wind-RO
PV-ED

PV-RO

Solar CSP-MED
Solar-MD
Solar-MED

Solar Stills

0 2 4 6 8 10 12 14 16 18 20 22
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Figure 7 Cost of production for different renewable energy powered desalination systems.
There are many references in the literature that describe the current status and future
development of solar desalination. Delyannis reviewed the historic development of solar

desalination technologies [22,23]. Li et al. [24] presented a comprehensive review of the current
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solar desalination research powered by direct or indirect solar energy. Although not

commercialized yet, hybrid desalination systems that use solar, fossil fuels and low grade waste

heat sources have a potential to be cost effective. Sharon et al. [25] performed a comprehensive

performance analysis of solar desalination technologies that includes direct and indirect methods

(membrane and phase change process) based on specific energy consumption, performance ratio,

efficiency, and recovery ratio. Key findings about solar assisted MED that are mentioned in the

most recent literature are summarized in Table 2 and further detailed in Chapter 2.

Table 2 Summary of key findings about MED in solar desalination in published literature.

Reference

Key Finding about Solar-MED

Delyannis, E.
(1987,2003) [9,10]

Reviewed solar parabolic dish concentrator powered MED-TVC and evacuated tube
collector powered MED that has a capacity 120 m3/day in UAE.

Li, C. etal. (2013)
[24]

Solar-MED is a proven technology where solar-MED-RO (hybrid) and co-generation
solar system have an enormous potential.

Sharon, H. (2015) [25]

Solar-MED different configurations are mature technologies, and more favorably for
large production. The cost of solar pond coupled MED is in range 0.71-0.89 $/m? and
CSP powered MED 2.4-2.8 $/m®,

Al-Karaghouli, A and
Kazmerski, L (2013)
[16]

MED and RO are the best candidate for CSP coupling. Where the cost of energy in
MED for low temperature heat sources is up to 60% and for co-generation is less. The
cost of energy for RO is about 44%.

Hetal, K. et al. (2014)
[26]

They conducted that solar-MED shares 13% of the installed capacity among distribution
of renewable energy powered desalination and most suitable desalination technology is
MSF and MED for solar power.

Qiblawey, H and
Banat, F. (2008) [27]

The cost of solar powered MED has dropped from 3.2 $/m? to 2 $/m® when the capacity
is increased from 500 m®/day to 5000 m%/day.

Palenzuela, P. et al.
(2015) [28,29]

Compared the cost of large scale CSP powered MED and RO in different configuration
in the Mediterranean basin and the Arabian Gulf, found. They recommend combination
of CSP with MED for the Arabian Gulf.

1.2 Motivation for the Present Research

Middle East and North Africa is a region with high dependence on non-renewable water

resources which face the challenge of depletion. In Saudi Arabia a study performed on the main

and secondary aquifers for about 10 years has shown that the amount of available water has been

decreased by about 40% [30,31]. GCC are the highest desalination producers and account for more
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than 30% of the total global desalination capacity. Thermal desalination represented by MSF and
MED accounts about 71% as shown in Figure 8 [32,33]. In Saudi Arabia, the total water produced
by desalination has increased by 40% between 2010-2016 based on the Electricity & Cogeneration
Regulatory Authority (ECRA) annual reports represented in Figure 9 [34]. GCC countries
consume about 38 million tons of oil equivalent per year to meet their needs in water. The World
Bank and EIA have projected that the amount of desalinated water will almost double by 2050.
That brings three main challenges; making desalination technologies friendlily to the environment
by reducing CO- emissions, increasing the performance of desalination technologies to reduce the
energy consumption, and developing and implementing renewable energy desalination

technologies where they are cost effective.

Desalination Technologies
Market in GCC

MED
12% RO
29%

MSF

59%

Figure 8 Desalination technologies market in GCC.
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Figure 9 Actual production of desalinated water in Saudi Arabia in period 2010 — 2016.

Shifting to RO desalination plants that use less energy, reforming the policies in the
agricultural sector by using treated waste water and implementing solar in the current thermal
desalination systems in GCC may lift the burden of intensive fossil fuels use in desalination and
minimize the side effects of GHG emissions[35].

US Department of Energy (DOE) has called for research proposals to reduce the specific
thermal energy consumption of solar-MED, to less than 30 kWh/m? and the unit costs to be less
than 0.5 $/m?3 for seawater and 1.5 $/m?® for small capacity and high concentration brine more than
100,000 ppm. This will be fantastic opportunity for GCC since thermal desalination is dominant
there and the conventional MED costs in the range of 0.8-1.2 $/m?®. The variation of total costs of
produced water ($/m®) from conventional desalination technologies is listed in Table 1 based on
many factors, such as, the specific energy required, the degree of salinity (ppm) and the scale of

production (m3/da

11
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While the membrane desalination by reverse osmosis have the highest share in the market
for desalination, it has a limitation that it is not able to treat water with a salinity of more than
100,000 ppm and cannot achieve 50% recovery at water above 50,000 ppm. The pressure limit for
the current commercial RO is 8.3 MPa. Beyond this limit the membrane spacers collapse and are
not appropriate to flow water[36]. Al-Karaghouli et al. analyzed the impact of increasing the
salinity on the performance of RO desalination plant (2000 m*/day) located in Umm Qasr in
Arabian Gulf where salinity is in the range of 38,000-42,500 ppm[37]. Their results are shown in
Figure 10. The cost of water production was increased by almost 5% and the specific energy
consumption was increased about 23% because of the increase in the osmotic pressure by 10%.
Moreover, the recovery ratio, defined as the mass of fresh water produced over mass of the feed,
was decreased by 40% and the quality of water produced was decreased by 11%. That shows the

need for using thermal desalination for high concentration feed.
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Although multi-stage flash desalination (MSF) has higher share of market among the
thermal desalination technologies in the world, it has higher energy consumption, higher
temperature operation, and higher capital costs compared with multi-effect desalination (MED).
Therefore, MED has attracted more attention in the MENA region from energy prospective. In
addition, MED can be operated at a low temperature below 90°C avoiding scaling and fouling
issues. This range of low-temperature operation gives MED an advantage to be compatible with
low grade heat sources such as geothermal, solar or waste heat.

One of the major improvements in MED would be eliminating the down condenser totally
or partially. Most of the studies in the literature are focused on solar MED-TVC coupled with a
power cycle or a stand-alone system driven by a solar technology while a few have discussed
MED-MVC. Mechanical vapor compressor assisted MED is more attractive since it makes it
possible to operate a MED system by electricity, eliminating the external steam [38]. For solar
energy powered MED-MVC either PV or a solar thermal power could be used. Most recent studies
on MED-MVC are summarized on Table 3.

Based on our review, a system that has not been investigated in the literature is using
supercritical ORC powered MED-MVC for low and medium temperature heat sources. The
advantage of using a supercritical ORC as opposed to a subcritical ORC is that the heating process
does not go through the two phase region, creating a better thermal match in the heat exchanger
with less exergy destruction and ultimately a higher cycle efficiency. Due to the availability of low
and medium temperature heat sources such as waste heat, solar or geothermal, a detailed study of
a MED-MVC operated by a supercritical-ORC will add value to the knowledge base of

desalination to meet the energy challenge.
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Table 3 Most recent literature studies on MED-MVC.

El-Dessouky et Ay:lar et He;;all et NaZTy et Shaarlaf et He et al.
al., 2000391 | oo00140] | 2006[41] | 2008[42] | 2011[43] 2018[44]
Solar System - - PV - PTC -
Power cvcle ) ) ) ) ORC, Transcritical
y 350°C COy, 85°C
Number of effects 3 1 1 2 16 1
Mass of water 3000 250 120 1500 4545 111.456
production daily, m?/d
Top steam 70 87.00 59 65 60 85
Temperature, °C
Temperature of brine 62.9 81.35 18 60 46.8 -
in last effect, °C
salt concentration of 36000 - 45000 | 42000 46000 -
intake seawater, ppm
Recovery Rate 0.49 - 0.44 0.35 0.333 -
Specific energy
consomotion, KW/ 6.3 11.47 15.6 9.4 4.18 13.99

1.3 Research Objective

The main goal of this research is to study a novel system coupling a solar supercritical
organic Rankine cycle with low-temperature multi-effects desalination assisted by mechanical
vapor compressor (solar-Supercritical-ORC-LT-MED-MVC) treating high concentration feed and
to analyze this system thermodynamically and economically. The proposed system has the
potential to meet the two goals set by USDOE for solar-MED, which are specific thermal energy
consumption less than 30 kWhin/m?® and the specific cost less than 1.5 $/m3. A brief description of
the contents of the chapters in this dissertation is given below:

Chapter one highlights the general background of the desalination, current water demand
and future trend, solar desalination current status, motivation of the research and the research

objective of the present work.
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Chapter two presents a literature review associated with solar assisted multi-effects
desalination systems with different combinations such as solar-MED, solar-MED-TVC and solar-
MED-MVC, focusing on ORC driven thermal desalination and mapping it with the DOE goals.

Chapter three discusses the components of the proposed innovative system that include
four sub-systems; solar sub-system, supercritical-ORC sub-system, LT-MED sub-system and
MVC sub-system.

Chapter four presents the performance analysis and discusses using organic fluid to drive
the proposed system for low grade heat sources optimizing the pressure of the power cycle and
comparing ORC and supercritical-ORC with the motive steam temperature, pressure of the power
cycle, salinity of the feed, and the number of effects as variables.

Chapter five presents an exergy analysis of the proposed system with the motive steam
temperature, pressure of the power cycle, salinity of the feed, and the number of effects as the
variables.

Chapter six provides a comparison of the proposed system with solar-MED and solar-
MED-TVC in terms of specific energy consumption and solar field size, which shows the
advantage of using supercritical-ORC to run thermal desalination.

Finally, chapter seven summarizes the conclusions and future recommendations.
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CHAPTER 2: SOLAR ASSISTED MED, A REVIEW

2.1 Introduction

The improvements of membrane and energy recovery devices are driving the specific
energy and costs of RO desalination lower, resulting in a high market share for desalination
technologies. However, high salinity feed, high temperature feed, and the presence of organic and
inorganic pollutants increases the cost of RO in replacements and pretreatment processes and can
potentially cause the plant to shut down [45]. During harmful algae blooms (HAB) in the Arabian
Gulf, RO plants were shut down for two months in Oman and UAE [46]. Therefore, thermal
desalination is dominant in GCC although it consumes more energy than RO.

Thermal desalination, which is a phase change process, consists of a series of evaporation
and condensation process. Multi stage flash (MSF) and multi-effects desalination (MED) are major
desalination technologies for saline feed. The MED process has the ability to operate at low
temperatures (less than 70°C), minimizing the risk of scale formation in the tube surface. MED
has two clear advantages over the MSF process: lower power consumption and higher performance
efficiency [47]. Reduction of oil consumption and air pollution resulting from desalination
processes is the driving force for researchers to implement solar energy in desalination process.

Solar assisted multi-effect desalination (MED) is considered an indirect solar desalination
system that is composed of two subsystems: a solar subsystem that converts solar energy into either
heat or electricity, and an MED subsystem where the motive steam needed to the process is heated
totally, partially or compressed by vapor compressors. Therefore, solar can assist MED by

providing heat or power. There are many different arrangements to achieve this such as
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photovoltaic (PV) collectors powering MED-MVC, solar thermal collector, such as solar pond
(SP), flat plate collector (FPC), evacuated tube collector (ETC), parabolic trough collector (PTC)
or central receiver tower, providing heat to MED or MED-TVC directly or driving a heat engine
that drives MED, MED-TVC or MED-MVC.

In this chapter, a comprehensive review of solar assisted MED is presented. Non-
conventional systems such as hybrid, co-generation and zero liquid discharge (ZLD) are also
discussed. The systems studied in the literature are mapped against the DOE goals regarding solar-
MED that aim to have a specific thermal energy consumption less than 30 kWhw/m?3, and a cost

less than 0.5 $/m? for seawater and 1.5 $/m? for salinity greater than 100,000 ppm.

2.2 Solar Assisted MED

Direct use of solar thermal energy to run MED is the simplest combination as shown in
Figure 11. The motive steam which enters the first effect to give the latent heat to start the series
of evaporation and condensation processes in other effects is heated directly in the solar field via
direct steam generator (DSG) or indirectly through a heat exchanger boiler connected to the solar

field.
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Figure 11 MED powered by different types of solar collectors.

Garcia-Rodriguez et al. [48] proposed MED driven by parabolic troughs based Direct
Steam Generation (DSG). Garcia-Rodriguez et al. [49] compared the performance and the
preliminary costs of three configurations of MED in Spain: a solar-fossil fuels powered MED plant
with DSG using parabolic troughs, solar-fossil fuels powered MED plant using a HTF, and a
conventional MED plant. However, this combination was not tested experimentally and estimating
the cost of DSG parabolic trough is difficult since it is not commercial [50].

A solar pond, which is a combined solar collector and thermal energy storage, is composed
of three layers: the upper convective zone (UCZ) that has lower salinity and low temperature, the
non-convective zone (NCZ) that has salinity and temperature gradient, and lower convective zone
(LCZ) that stores the heat at high salinity at temperatures up to 110 °C. Solar pond (SP) has the
lowest cost among solar collectors, however, it requires a large area and its stability is affected by
evaporation [51]. The El-Paso Solar Pond project in Texas studied the combination of a solar pond

with different thermal desalination systems in 1987 including small multi-effect desalination,
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multi-stage flash desalination, and membrane desalination focusing on the technical feasibility and
thermal performance [52]. Al-Hawaj et al. [53] analyzed the performance of SP-MED for three
years. The number of effects was 5, the capacity of production was 100 m3/day, and the motive
steam temperature was set at 90°C. They concluded that the optimum temperature of SP is in range
of 80-90 °C. Tsilingiris [54] modeled a SP-MED system of 500 m3/d capacity and a motive steam
temperature of 75°C. The cost of production was 2 $/m® and the specific thermal energy
consumption was 75 KWhw/m?® with 14 effects of MED. Caruso et al. [55] tested a SP-MED for
one year at the University of Ancona in Italy that had a capacity of 30 m®d and 4 effects of MED.
The specific thermal energy consumption was 192 kWhu/m®.

A flat plate collector (FPC) driven MED was studied by Gerofi et al. [56] in 1983 in
Sydney, Australia. Fresh water was pumped through the collectors and flashed in a tank producing
motive steam to drive the MED. The specific cost using FPC was 4 $/m® as compared to 5.10 $/m?®
for evacuated tube collector (ETC) [57].

Evacuated tube collector (ETC) powered MED was tested experimentally in 1984 at United
Arab Emirates (UAE). EI-Nasher and Samad [58] reported 13 years of operation and performance
of ETC-MED which had 18 effects producing 85 m?/d for feed salinity of 55,000 ppm where the
specific thermal energy consumption was 50 kWhi/m?® and the cost of water produced was 7-10
$/m3.

Parabolic troughs collector (PTC) powered MED was tested experimentally at the
Platforma Solar de Almeria (PSA) in 1988 [59-62]. A system with 14 effects of MED, where the
motive steam temperature was 70 °C, with a capacity of 72m?®/d and thermocline thermal energy
storage (TES) required 2,672 m? of PTC for 24-hour operation. The specific thermal energy

consumption was 63.33 kWhu/m?®. Sharaf et al. [43] studied different arrangements of MED
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coupled with PTC regarding the direction of the feed and motive steam such as; parallel feed (PF),
forward feed (FF), preheated forward feed (FFH) and backward feed (BF). The system was
designed to produce 100 m®/day. The specific thermal energy consumption and the costs of unit
water produced by MED-FFH and MED-PF were lower than MED-BF and MED-FF.

Table 4 shows the specific energy consumption and costs of water produced for solar-

MED.
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Table 4 Summary of solar-MED.

Desalination Salinity of Motive Cost of Unit Specific thermal
Model or Solar Number of . energy
Author Capacity the Feed Steam Produced .
Exp. System Effects (m¥/day) (ppm) Temp. (°C) ($/m?) Consumption
y PP P- (KWhg/m?)
— Rodn
carcte? O[gg]guez ®| Model | PTC-DSG 14 2400 35,000 <100 1.6-41 62.67°
Tsilingiris [54] Model SP 14 500 40,000 75 ~2 75
Caruso et al.[55] Exp. SP 4 30 42,000 65 3.041 192
Gerofi et al.[56] Model FPC - 100 35,000 76 4 64.8°
El-Nasher and
Samad [58] Exp. ETC 18 85 55,000 76.5 7-10 50
Platforma Solar de
Almeria (PSA) Exp. PTC 14 72 32,000 70 - 63.33
phase I [59-62]
16 effects,
MED-PF 5.47 424
;GE?EFC'EE 5.75 46.25
Sharaf et al.[43] Model PTC 100 42,000
16 effects, 1287 1438
MED-FF ' '
16 effects,
MED-BF 7.139 65.2

1 Reported Data was in Euro. The conversion based on 1 euro = $1.14.
2 Based on PR of MED = 10 and 24-hour operation with TES, and latent heat at 100 °C = 2256 kJ/kg.
3 Based on PR of MED = 10 and 24-hour operation with TES, and latent heat at 70 °C = 2333 kJ/kg.
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2.3 Solar Assisted MED-TVC

A major development in MED has been promoted by the French company SIDEM that
developed a combination of thermal vapor compressor (TVC) with MED. It built several plants in
GCC each with a capacity of 6.5 million gallons per day (MIGD) [64]. The major benefit is
recovering the lost heat of MED by entraining a small fraction of the vapor formed in the last effect
which is at a low temperature and low pressure (<0.1 bar) through TVC and compressing it with
motive steam that has a pressure of 3-20 bar. The combination of solar powered MED-TVC is

shown in Figure 12.

Parabolic Trough
[@fe] | [=Ted(e]g

(PTC)

(4.LH)
pin4 Jajsuel | 1esH

Heat Exchanger
Boiler

(HXB)

Wea)s AANO

Multi-Effect

Desalination
(MED-TVC)

Figure 12 Schematic of solar-MED-TVC.
Parabolic trough collectors powered MED-TVC was tested at the solar thermal desalination
project (STDP) in 1987-1994. The system had a capacity of 72 m3/day and was composed of 14
forward feed multi-effects coupled to one-axis tracking PTC. The entrained vapor temperature was

35°C and the high pressure steam was at 16-26 bar. The thermal performance of MED was
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increased from 9.4 to 12 [65]. The calculated specific thermal energy consumption is about 50
kWhi/m?3. Sharaf et al. [66] analyzed parabolic troughs collector coupled with parallel feed MED
—~TVC composed of 5 effects that had a capacity of 4545 m®/day. The cost of unit water produced
was 1.323 $/m? and the calculated specific thermal energy consumption was 87.9 kWhu/m®.

Table 5 shows the specific thermal energy consumption and cost of unit water produced
using solar-MED-TVC.

Table 5 Summary of solar assisted MED-TVC.

- . Specific
Model Number | Desalination Salinity | Motive COSt_Of thermal
Solar . of the Steam Unit
Author or System of Capacity Feed Tem Produced energy
Exp. y Effects (m3/day) P- Consumption

(o) | C) | (i) | T

Solar thermal
desalination
project
(STDP) in
1987-1994
[65]
Sharaf et al.
[66]

Exp. PTC 14 72 32,000 70 - 50

Model PTC 5 4545 46,000 60 1.323 87.9

2.4 Solar Assisted MED-MVC

Coupling mechanical vapor compressor with MED is considered more attractive and
reliable compared to other heat pumps since it eliminates the down condenser. However MED-
TVC plants have been installed with a capacity of more than 22,000 m%/day while the maximum
capacity of MED-MVC is reported at 5,000 m®/day [67]. The combination of solar-MED-MVC

could be driven by PV or solar-heat engine driven compressor as shown in Figure 13.
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Figure 13 Solar assisted MED-MVC.

Helal and Al-Malik [41] suggested a hybrid PV/diesel powered MED-MVC system with a
capacity of 120 m®/day and a motive steam temperature of 59 °C. The feed was heated by distilled
water and the difference between the saturation temperature and motive steam temperature was 4
°C. The specific energy consumption of the system was about 15.3 kWhe/m®.

Solar powered regenerative organic Rankine cycle (ORC) driven MED-MVC was studied
by Sharaf et al.[66]. The design of PTC was based on LS-3 type and Thermiol-VP1 was used as
the HTF providing to the ORC. The ORC was operated at 300 °C and 3.275 MPa, and toluene was
used as the working fluid (T¢ = 320 °C, Pc= 4.1 MPa). MED-MVC was composed of 16 effects
with a motive steam temperature of 60 °C producing 4545 m®/day. The specific energy

consumption was 4.18 kWhe/m? and the cost of unit produced was 0.94 $/m®.
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Table 6 shows the specific thermal energy consumption and cost of unit produced for solar-

MED-MVC.

2.5 Solar Assisted Non-conventional MED

Decreasing the specific energy consumption and the cost of unit produced is considered
the main goal in the desalination market. In co-generation plants, MED or MED-TVC is connected
with power plants, as shown in Figure 14, to utilize the rejected heat and reduce the cost.

Researchers have tested different power cycles based on the temperature of the heat source.

Heat Transfer Fluid
Solar Tower (HTE)

Parabolic Trough

Collector
(e

Receiver
(ST)

Thermal Energy
Storage (TES)

Electrical Power to Grid
D bbb bbbl Power Cycle

13M0d [e914103]3

MED/LT-MED/
MED-TVC

Figure 14 Solar-co-generation plant combination with MED.

Solar steam Rankine cycle (SRC) in the temperature range of 370°C — 700°C was
considered in many research studies. Low pressure steam from the turbine exhaust operates the

MED/MED-TVC, and the MED becomes the condenser of the Rankine cycle. Palenzuela et al.

26

www.manharaa.com




[28,29,68] analyzed different configurations for CSP-MED. The steam Rankine cycle proposed
operated at 370 °C and 100 bar. Three configurations were analyzed: low pressure steam at 70°C
entering the 1% effect of LT-MED as a motive steam, high pressure steam entering TVC as the
motive steam in MED-TVC, and low pressure steam entering the TVC as an entrained vapor. The
configuration of CSP-LT-MED replacing the condenser had the lowest cost and the overall
efficiency was decreased from 24% to 20% when the pressure of motive steam entering TVC was
increased from 2 bar to 7 bar.

A solar organic Rankine cycle that could be operated at temperatures less than 300 °C was
considered by Sharaf et al. [43] using the 1% effect of LT-MED with different arrangements as a
condenser of the ORC where Toluene was used as the working fluid. The specific thermal energy
consumption for MED-FFH and MED-PF was 43.7 kWhu/m? and 33.7 kWhum/m? respectively.

Solar supercritical-CO> Brayton cycles that could be operated at high temperatures was
considered by Kouta et al. [69]. Two sCO> Brayton cycles (regeneration and recompression)
powered by solar tower coupled with MED-TVC and thermal energy storage (TES) were analyzed.
The incoming feed was preheated by the condenser of the power cycle and the motive steam
entering TVC at a pressure of 2.5 bar was heated from TES. The specific cost of unit produced
was about 1.2 $/m?3.

Table 7 shows the specific thermal energy consumption and cost of unit water produced

for solar-co-generation plants.
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Table 6 Summary of solar assisted MED-MVC.

Desalination | Salinity of Motive Cost of Unit | Specific thermal energy
Model Solar Number . .
Author or Ex Svstem of Effects Capacity the Feed Steam Produced Consumption
Pl oY (mP/day) opm) | Temp. (°C) ($/m?) (KWhe/m?)
Helal and Al- 1
Malik [41] Exp. PV 1 120 45,000 59 - 45
Sharaf et al.[66] Model | PTC-ORC 16 4545 46,000 60 0.94 ~12.541
Table 7 Summary of solar assisted co-generation coupled with MED.
Model Solar N Working Top Cycle Cost of Unit Specific therma.I
Author or Ex Svstem Desalination System Power Cycle Fluid Temp. (°C) Produced energy Consumption
P oY P ($/m?) (KWhg/m?)
| | LT-MED 78.8
Palenzuela et
al. [28.29,68] Model PTC MED-TVC SRC Steam 370 ~0.8 37
MED-TVC 37-45
MED-PF 5.057 337
Sharaf et MED-FFH 5.132 43.7
Model PT R Tol
al.[43] ode ¢ MED-FF ORC olene 300 13.75 1435
MED-BF 8.031 71.13
sCO; Bryton i
Kouta et al. Recompression
Model ST MED-TVC CcoO 450-570 0.9-1.2
[69] sCO; Bryton 2 ]
Regeneration

! Convert from electrical to thermal based on efficiency 33.33%
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2.6 Discussions

The cost of unit water produced and specific thermal consumption in solar-MED
configuration depends on the type of solar collector that was used and the combination of MED as
standalone or assisted by vapor compressor. Other factors that impact the cost and thermal
consumption include the salinity, feed arrangement of MED, and temperature of the motive steam.

Since the cost of solar subsystem contributes about 60% to the total cost of unit produced,
selection of type solar collector is important. Based on our survey and as shown in Figure 15, solar
tower (ST) and parabolic troughs collector (PTC) are the lowest cost (<1$/m?®) compared to other

solar types.
16
14
12

10

Cost of Unit Produced ($/m?3)
[00)

| I

SP FPC ETC PTC-DSG PTC ST

Figure 15 Cost of unit produced based on the type of solar collector used in solar-MED.
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The specific thermal energy consumption for each MED depends on the number of effects,
and the motive steam temperature. Based on Figure 16, the combination of solar-MED-MVC is

the lowest compared with solar-MED and solar-MED-TVC.

250

200

150

100

50

Specific Thermal Energy Consumption (kWh,,/m?3)

Solar-MED Solar-MED-TVC Solar-MED-MVC

Figure 16 Specific thermal consumption based on MED combination.

The advantage of using co-generation plants is very clear in the cost of unit produced as
shown in Figure 17. However, using the MED subsystem as a condenser in the ORC increased the

cost of unit produced and specific thermal energy consumption. MED-TVC performance was

superior in CSP+D.
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solar-MED Solar-MED-TVC solar-MED-MVC CSP+D

Figure 17 Cost of unit produced based on different system combination.

To give a clearer view of the performance of all of the systems that have been discussed in
section 2.2 to 2.5, they have been plotted with respect to specific thermal energy consumption and
cost of unit produced. Figure 18 shows that the co-generation solar power plants have the lowest
cost of unit produced ($/m3) and Figure 19 shows that PTC-ORC-MED-MVC has the lowest
specific thermal energy consumption among solar-MED.

In conclusion, the specific thermal energy consumption and cost of unit produced have
varied across different combinations in the literature review that require a fair comparison between

solar-MED, solar-MED-TVC and solar-MED-MVC with the same assumptions and variables.

31

www.manharaa.com




Cost of Unit Produced ($/m3)

www.manharaa.com

1]
.m vm AEnN-98ad-01d
B ¥ +QIN-dS
g
mm M »* ! AEN-dS
EE & _ :
P » ! AIN-0dA a
g '
To » _ Qan-01d =
[s] - o ! a
m( g | dIN-21d nla
(@)
1 X o S
I » _ JA-QIN-D1d Z
! @
* X Ad-THN-OLd 3
@
_ b1 =
3 | -QaEW-OLd =
! Y
* 1 AI-TaEN-OI1d 5
_ 3
1 +IAL-TAN-OLD 8
1
¢ OAL-QEN-OLd iS) ~
1 = o
1 DAN-THN-DU0-DLd 3
_ &
! DAWN-TIA-AD &2
! o
“ » DAL-QaEN-uolssaduniosy uolkerd 7OOs-1S S
“ % DA I-QHN-UCLRIAUSSY uolierd 70Is- LS 5
o
1 =
* X 48-QEN-O0DLd =
(72}
1 R%2)
» | A4-THN-DUO0-01d )
! o)
» ' HLI-OIN-0¥0-01d —
! @
» | Ad-TEN-0M0-0Ld =1
1 R
1 3¢ DAL-QAIN-0dS-01d LL
1
13| | « OAL-QEN-0¥S-01d
1
1 3¢l | agwrous-01d




DOE Goal

Specific Thermal Power Consumption (kWhth/m3)

250
200 T
150 +
100 +
50 T

THN-OSA-DLd

www.manharaa.com

«THN-dS

dHIN-dS

TIN-Odd

TIN-DLH

JIN-O1d

J9-TIN-O1d

Ad-THN-O.Ld

HAI-THN-DLd

HA-THEN-D.Ld

#IAL-THN-D Ld

OAL-TIN-OLd

™
™

DAWN-TEN-DJO0-D1d

DAW-AHN-Ad

JAL-aaN-torssardunuosay uoykerg 7OJs-1S
DA I-QHN-UoNeIaUSTY Uolierg 700s-1S
HH-THN-DH0-01Ld

AA-THN-DH0-D1d

HAA-GHN-2UO-20d

Ad-THN-Dd0-01d

DAL-THN-DUS-01d

# IAL-TIN-DUS-O1d

TIHN-LT-OUS-01d

Figure 19 Distribution of specific thermal energy consumption for different solar-MED.




CHAPTER 3: DESIGN OF SOLAR POWERED SUPERCRITICAL ORGANIC

RANKINE CYCLE DRIVEN MED-MVC!

3.1 Introduction

Use of solar organic Rankine cycle (solar-ORC) in desalination applications has had recent
advances in both phase change processes and membrane processes. Solar-ORC powered reverse
osmosis (RO) has more attention in recent research. Li et al. proposed a co-generation system
including solar parabolic troughs, a supercritical organic Rankine cycle (ORC), and reverse
osmosis (RO) desalination [70]. A system efficiency of 21% was achieved when the high
temperature of the power cycle was 400°C [70]. Palenzuela et al. studied three co-generation
systems: a steam regenerative Rankine cycle at a temperature of 400 °C coupled with RO, a low
temperature multiple effect desalination (LT-MED), and an LT-MED coupled with thermal vapor
compressor (TVC), or LT-MED-TVC, where the exhaust steam from the high or low pressure
turbine was used in the LT-MED. The specific energy consumption for using RO was 5.6 kwh/m?
as compared to 2.5 kWh/m?3 for LT-MED and LT-MED-TVC [68]. Sharaf et al. analyzed a model
coupling multiple effect desalination (MED) with an ORC using solar parabolic troughs and
toluene as the working fluid. The system of 16 effects utilized the first effect as the condenser for
the ORC. The specific energy consumption was about 11.1 kWh/m? for preheated forward feed

and parallel feed configurations when the motive steam temperature was set at 88 °C and the

! The material in this chapter has been previously published in the following paper: Almatrafi, E., Moloney, F., and Goswami, D. Y., 2017,
Multi-Effects Desalination-Mechanical Vapor Compression Powered by Low Temperature Supercritical Organic Rankine Cycle, IMECE 2017:
Proceedings of the ASME's International Mechanical Engineering Congress and Exposition (IMECE); 2017 Nov 3-9; Tampa, USA, Volume 6:
Energy, ASME, p. VO06T08A020.
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salinity of the feed was 42,000 ppm [43]. Sharaf et al. analyzed a model of an MED system with
16 effects in parallel feed configuration assisted by mechanical vapor compression (MVC)
powered by an ORC where the feed was preheated in the condenser of the power cycle. The
specific energy consumption was about 4 kWh/m?, when the motive steam temperature was 60 °C
and the salinity of the feed was 46,000 ppm [66]. For low temperature heat sources at 80 to 170
°C using solar evacuated tube collectors, geothermal or waste heat, Li et al. presented a model for
a combined system to treat high concentration brine by coupling an MED-ejector with a
supercritical ORC. The working fluid of the supercritical ORC-ejector condensed in the first effect.
The power cycle efficiency was about 5%, the ejector efficiency was 47.5% and the concentration
feed was 40,000 ppm for 14 forward feed MED effects. When the salinity of the feed increased to
55,000 ppm, the system consumed all of the work generated by the power cycle [71]. Table 8 has
listed some selected solar powered ORC driven desalination systems for low-medium temperature
heat sources.

Table 8 Selected solar-ORC powered desalination systems.

Model o . Max_. SPe.
Author or Solar DNI Desalination (?RC . Work.lng Operating energy
Exp System | (W/m?) System Configuration Fluid Temp. Cons.
' (°C) (KWh/md)
Delgado-
Torres Model PTC 850 RO Single Toluene 380 2.38!
[72,73]
Naf FPC Butane 100 6.84
[34?’ Model [ CPC | 850 RO Single Hexane 150 7.231
PTC Toluene 320 7.679
Cascade
Befate Upper MM 350
Model | PTC 850 RO 2.99
[75] Cascade Isopentane 150
Bottom
Sharaf | \yodel | pTC | 252 | MED-Mvc | ORCWIM Toluene 350 4.18
[43] Recuperator

! Calculated based on DNI and efficiency, of ORC and fresh water production.
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In this chapter, a design of a solar assisted supercritical-ORC driven MED-MVC is
presented. The proposed system is composed of four subsystems; solar subsystem which is
represented by evacuated tube collectors providing a low temperature heat source, a supercritical
ORC subsystem, a low temperature multi effect desalination (LT-MED) subsystem, and a
mechanical vapor compressor (MVC) subsystem. The advantage of using a supercritical ORC as
opposed to a subcritical ORC is that the heating process does not go through the two phase region,
creating a better thermal match in the heat exchanger with less exergy destruction and ultimately
a higher cycle efficiency [76]. LT-MED, where the top boiling temperature is less than 90°C,
reduces fouling and scaling in the effects common in standard MED systems [77]. MVC has a high
efficiency and is more reliable when compared with other vapor compressors [78-80]. The
proposed innovative design has the potential to desalinate water of high salt concentrations with
low energy consumption and high efficiency when compared with the previously discussed
systems. The impact of number of effects of an MED subsystem on the specific energy
consumption of the proposed system and the performance of the MED subsystem has been

analyzed.

3.2 Methodology

A steady state numerical model was developed in MATLAB to analyze the proposed
system. The system has four main components, as shown in Figure 20, which are the solar field,
the supercritical ORC, the multi-effect desalination (MED), and the mechanical vapor compressor
(MVC). A solar field of evacuated tubes collects the heat used in the power cycle. The supercritical
ORC serves two purposes: to run the MVC by the turbine and to heat the feed (My) by rejected
heat through the condenser. The saturated vapor formed in last effect (Mn) in MED subsystem is

mechanically compressed by the MVC subsystem resulting in superheated steam at the same
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pressure as in the first effect. Then it mixes with some of the saturated liquid product from the first
effect (Ms — M) to balance the mass flow rate, which has been omitted from Figure 20 for the sake
of clarity, and de-superheat the stream before proceeding to the first effect as a motive steam at
saturation temperature (Ts). The motive steam passes through the first effect while the preheated
feed fluid is sprayed into the first effect at Tr. Some desalinated water from the feed fluid
evaporates out using the latent heat condensation of the motive steam (As). The vapor formed in
the first effect (M) moves to the feed pre-heater to elevate the temperature of the feed by
condensing a small amount of the vapor before the second effect to work as the motive steam and
heat source at (Tv1) which is less than the temperature of the brine by boiling point elevation (BPE)
and so on. The brine enters the next effect at a lower pressure, flashing a small amount of vapor,
and gains heat from the new motive steam, producing boiling vapor. The produced vapor passes
through the feed preheater and acts as motive steam in the next effect. At the last effect, the vapor

formed (M) is sent to the MVC to continue the cycle.
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Figure 20 A schematic diagram of the proposed system showing (1) solar subsystem, (2)
supercritical-ORC subsystem, (3) MVC subsystem, (4) LT-MED subsystem and different
streams HTF (gold), feed (blue), working fluid (black), steam (red) and water (light blue).

3.3 Solar Field

The solar field is the heat source for the proposed system. The maximum temperature is
150°C that enters the heat exchanger of the power cycle and exits at 105°C. The thermal power
output from the solar field is the heat input of the cycle divided by the effectiveness of the heat
exchanger as shown in (Eq. 1). After specifying the total mass flow rate of the heat transfer fluid
(HTF) required to deliver the thermal power and calculating the efficiency of the collector using

Eq. 2, the solar area is calculated based on Eq.4. The values used for the solar subsystem are shown

in Table 9.
) Qin y
Usolar = = Myt * ¢pyrr(Tout o — Tingo;) )
Tava—T, (T _T )2
e = Mg = s (25) = a (22725 @
Tout o1 Ting,
Tavg = (lz—l) (3)
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Asotar = % (4)
Table 9 Preliminary design parameters for solar field subsystem.

Parameter Value
Solar Subsystem
Designed solar insolation, G, W/m? 1000
Ambient temperature, T,, °C 25
ETC model specifications[81]
Area of the collector, Acotiector, M? 3
Designed mass flow rate in a collector, Mytc, I/min 6
The optical efficiency of solar collector, Noptical 64.4
Heat transmission coefficient, al 0.89
Heat transmission coefficient, a2, 0.001
Heat transfer fluid (HTF) Tyfocor Ls[82]
Designed high HTF temperature, Tou, °C 150
Designed low HTF temperature, Ti,, °C 105
Specific heat capacity of HTF at Tayg, kJ/kg. °C 3.97[82]

3.4 Supercritical Organic Rankine Cycle

For low-temperature heat sources (below 170°C), using organic fluids in a Rankine cycle
as working fluids instead of steam is more economical[83]. Organic Rankine cycles (ORC) have
the same processes of a conventional Rankine cycle, however an organic fluid is used. A schematic
of a solar-ORC has been shown in Figure 21. The working fluid in the supercritical ORC is R152a
which performs well at the proposed temperatures of a supercritical ORC [76]. The temperature-
specific entropy diagram of R152a is shown in Figure 22 with the states for a supercritical cycle.
R152a has a critical point of 113°C and 4.52 MPa. Heat input from the solar field heats the R152a
beyond its critical temperature via the heat exchanger as modeled in Eqg. 5. As the condenser is
used to heat the feed of the desalination system defined in Eq. 6, the working fluid needs to remain
at a higher temperature throughout the condenser to ensure heat transfer. The pinch point in the
primary heat exchanger (boiler) was set to 5°C and 2°C for the condenser. The effectiveness of the
boiler and the condenser was set at 0.95 each, and the design parameters of the supercritical ORC
are listed in Table 10. The net power of the cycle is defined as the difference between the turbine
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output and the pump input work and equals the total work required by the desalination system for

the MVC work and the feed pump work (Eq. 7).

Qin = mWF(hl - h4) =&* MHTF * CpHTp(Toutcol - Tincol) (5)
Qout = 1yr(hy, —h3) = % MF * Cp AT (6)
Wnet = Wt - Wp = mWF[(hZ —hy) = (hs — hy)] (7)

4) {1y

> L
52 .

(3) 2)

Figure 21 A schematic of ORC cycle.
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Figure 22 Basic supercritical organic Rankine cycle with R152a T-s diagram.

Table 10 Preliminary design parameters for supercritical-ORC subsystem.

Parameter Value
Effectiveness of heat exchanger boiler and condenser, % 95
Designed pinch in heat exchanger boiler, °C 5

Designed pinch in the condenser, °C
High pressure cycle, P, MPa

Efficiency of turbine and pump, % 85
Condensation temperature, Teong, °C 41

3.5 Multi Effect Desalination (MED)

Preheated forward feed LT-MED consists of a series of evaporators, preheaters and flash
boxes where the feed and the formed vapor move in the same direction through the effects, as
shown in Figure 23. The feed is moving from one effect to another due to the difference in pressure
and the vapor is condensed in each effect at a pressure higher than the pressure set in the effect.
After compressing the vapor formed in last effect, the fluid has a high temperature and pressure
and is known as motive steam. The motive steam entering the first effect condenses and part of the
mass of feed that is sprayed and evaporated by the latent heat of the motive steam. Then this vapor

will be a motive steam for the following effect. The first effect is further detailed in Figure 24.
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Figure 24 First effect of MED schematic.
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Considering the energy balance, mass balance and material balance in the system a detailed

model of MED was developed in MATLAB. The preliminary design parameters are shown in

Table 11. The following assumptions were used in the model:
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e Steady state

e Thermal losses and vapor leaks to the environment are negligible

e The vapor formed in the effects contains no salt

e The effect of demister in pressure drop is negligible

e The brine, feed, and distillate are in the saturated liquid phase in each effect
e No pressure drop in the effects

Table 11 Preliminary design parameters for LT-MED subsystem.

Parameter Value
LT-MED Subsystem

Intake seawater temperature, Tintake, °C 30
Rejected brine temperature, Tpyine, °C 40
Motive Steam temperature, Ts, °C 60
Temperature in the last effect, Ty, °C 40
The distillated flow rate, m, , kg/s 11.04
Salinity of the intake seawater, X, ppm 42,000
Salinity of the rejected brine in last effect, X,, ppm 84,000
MVC Subsystem

Efficiency of MVC, nyyc, % 85

3.5.1 Mathematical Model of the Effects

For the 1% effect, the energy, mass and material balance are defined in Eq. 8-10:

Tfls*ls=Mf*Cpf*(T1—Tf)+Tfl1*ﬂl (8)
My x X = By * X, (10)

For 2" n'" effect, the energy, mass and material balance are defined in Eq. 11-13, where

Qe =Thy_q * Ajq =y x A (11)
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Bi—l == mi + Bi (12)

B;x Xi =Bj_1* Xi1 (13)

For MED system, the mass and material balance are defined in Eq. 14-15:
M; =g + B, (14)

My« X; = By * X, (15)
Since the thermal load in each effect is equal, the area of each effect is calculated by Eq.

16, wherei=1 ...n:

A = A = Qe (16)

Up(Tyi=Tiy1)

The correlation developed by EI-Dessouky et al. was used to calculate the overall heat
transfer coefficient for each effect [84] that is defined in Eq.17.
U; = 1.9394 4+ 140562 * 1073 * T; — 2.0752 * 10~* * T;> + 2.3186 * 1076 + T;° (17)
3.5.2 Design Feed Preheater

The main purpose of the feed preheaters (Figure 25) is to increase the temperature of the
seawater intake (Tintake t0 Ts), reducing the energy required to deliver in the first effect by the
motive steam. In this proposed system, the number of feed preheaters is one less than the number
of effects. The feed gains the heat from a part of the vapor formed in previous effects. The vapor
flashed in each effect will be condensed in the feed preheater as shown in Eq. 18. The heat balance
across one feed preheater is defined as Eq. 19 and the area of feed preheater is illustrated in Eg. 20

where the overall heat transfer coefficient is defined in Eq.21 [85].

(Bn*cpn* (Tn—1—Tn))
Ay
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My * ¢y, % (Tp, = Tpo1) = 1ip % 4 (19)

. _ Tarr—Thrs
mfl * Ai = Afh * Ufh * m—_TW (20)
Tf_n—T}J}f
Upp = 1.6175 4 0.1537 * 1073 = T; — 0.1825 * T;” — 80.26 * 107° = T;® (21)
Feed Feed
Heater Heater

1 2:n-1

\ ¥ —/ Distillated Water

Flash Flash
Box Box

1 2n2
Figure 25 Schematic design of MED with feed preheaters.

The thermophysical properties of the working fluid and pure water such as the enthalpy,
latent heat, and entropy were analyzed by REFPROP software that is developed by NIST [86]. The
properties of saline water were calculated based on the seawater thermophysical properties library
developed by Al-Shargawi et al.[87,88]. Boiling point elevation (BPE), which represents the
difference in the temperature between fresh water and saline water due to salinity, and the constant

specific heat of the saline water was calculated accounting for salinity and temperature.
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3.6 Mechanical Vapor Compressor (MVC)

The mechanical vapor compression (MVC) is a standalone desalination technology.
Combining the MED and MVC increases the thermal performance of the desalination process and
makes it suitable for small desalination plants. More than that, it requires less pretreatment process.
The MVC assists MED by compressing the vapor formed in the last effect at (T») and Py to the
pressure Ps and Tys Which is greater than the temperatures of the steam (Ts) as shown in Figure 26.
Compressed vapor is entering the first effect of MED subsystem and heating the feed by its latent
heat. Small amount of vapor is formed in the first effect as a result of condensation of the motive
steam and drives the second effect. The work done by MVC is defined in Eq. 22 where the
isentropic constant of the steam (k) is 1.3. Since the steam exits from MVC as superheated, it is
de-superheated by mixing a small stream of liquid from the first effect as explained in Figure 27.
The energy balance after mixing is defined in Eq.23 and the enthalpy after mixing is defined as

saturated vapor at Ts.

k
%—1PnVn

)]

nMmvc

WMVC = MMy, * = my, * (hss - hvn) (22)

g * hys = My * hgs + (g —my) * hfs (23)
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Figure 26 Schematic design of MVC and mixing chamber.
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Figure 27 T-s diagram of water in MV C subsystem.

3.7 System Model Validation
Since there is no such system in the literature to compare with, the major subsystems were
validated first. The supercritical ORC was validated with the modeled results by Le et al [89]. The

MED subsystem was validated with the experimental and modeled data found in the literature. The
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experimental data was for a system with 14 effects and motive steam temperature between 57 and
74°C and a final effect vapor temperature of 35°C [90]. The thermal load input, performance and
distillated mass flow rate and the results of the model from Li et al. using the Engineering Equation
Solver (EES) software are listed in Table 12 [71]. The temperature profile (Figure 28), mass flow
rate for the brine (Figure 29) and the brine concentration (Figure 30) were found to be within 3%

of the Li's model based on the design parameters shown in Table 13.
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Table 12 Model validation with experimental data and Li’s model for 14 effect and mass flow for feed 2.22 kg/s.

. Recovery Rate Thermal Power Input (kW) Distillation Product (kg/s)
Motive Steam Performance ' . '
Temperature (°C) Ratio Exp. CT\:ESZT * | Model Exp. C:jzgzr > | Model Exp. CT\;ESZT S Model
57.00 8.90 0.24 0.24 0.24 137.00 135.60 140.34 0.53 0.53 0.53
60.00 9.10 0.28 0.28 0.27 153.00 153.50 158.39 0.61 0.61 0.61
63.00 9.30 0.30 0.30 0.30 166.00 163.90 168.65 0.67 0.67 0.67
65.00 9.00 0.34 0.34 0.34 191.00 190.50 195.54 0.75 0.75 0.75
68.00 10.00 0.36 0.38 0.36 182.00 184.20 188.52 0.80 0.83 0.81
70.00 9.50 0.36 0.36 0.36 195.00 193.90 198.02 0.80 0.80 0.81
72.00 9.40 0.38 0.38 0.37 203.00 202.70 206.38 0.83 0.83 0.83
74.00 9.30 0.38 0.38 0.37 207.00 204.90 208.14 0.83 0.83 0.83
Table 13 Design parameters used in Li’s model.

Parameter Value

Number of effects, n 14

Mass of water production, Mg (Kg/s) 0.748

Motive steam Temperature, Ts (°C) 65

Temperature of Vapor in last effect, T, (°C) 35

The intake seawater temperature, Tew (°C) 25

Feed seawater mass flow rate, ms, (kg/s) 2.215

Salt concentration of intake seawater, Xcw (ppm) 55000

MED performance ratio 9
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Brine Mass Flow Rate (kg/s) Vapor Temperature (°C)
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Figure 28 Validation of temperature of vapor in each effect.
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3.8 Performance Parameters

The following parameters were considered in order to evaluate the performance of the
proposed system (solar-supercritical ORC-LT-MED-MVC) described above, when the number of
effects is increased from 4 to 14.

Performance Ratio (PR) is the ratio of the mass flow rates of distillate water production to
motive steam (Eq. 24). The specific energy consumption (wyy.), describes the energy delivered by

MVC in KWh over the total volumetric production of purified water in one hour (Eq. 25).

PR = 14 (24)

T

w
Wy = 2200 (25)

3.9 Results and Discussion

The number of effects had a major impact on the performance of the MED subsystem; the
performance ratio increased when the number of effects increased, as shown in Figure 31. The
performance ratio as defined in Eq. 22 has two factors; mass flow rate of distillated product, and
mass flow rate of the motive steam. Since the distillated mass flow rate was held constant in the
model, mass flow rate of the motive steam had the main effect on the performance ratio of MED.
However, the motive steam mass flow is affected by the temperature and mass flow rate of the
vapor formed in the first effect and the preheated feed temperature based on Eq. 8. As a result, as
the number of effects increased from 4 to 14, the performance ratio was increased from 3.5 to
about 9 as a result of decreasing the mass flow rate of the motive steam from 3.17 kg/s to 1.21

kg/s.
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Figure 31 Results for different number of MED effects and performance ratio (PR).

The specific energy consumption decreased by about 250% as shown in Figure 32 when
the number of effects was increased from 4 to 14. The mass flow of the vapor formed in the last
effect had the largest effect as the temperature of the last effect and the motive steam were held
constant. This reduced the mass flow of the motive steam, causing the MV C to perform less work

as the number of effects increased.
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Figure 32 Results for different number of MED effects and specific energy consumption by
MVC subsystem.

3.10 Conclusion and Recommendations

In this chapter, an innovative desalination system is proposed and analyzed. This proposed
system could be operated as a combined power and desalination system that utilizes a low-grade
heat source powered supercritical-ORC drive MED-MVC thermal desalination. Parameters such
as performance ratio and specific energy consumption were analyzed for the proposed solar-
supercritical ORC-LT-MED-MVC system while increasing the number of effects from 4 to 14.
The best performance was found for a system of 14 effects where the system efficiency was about
16% with a performance ratio of MED greater than 9 and a specific energy consumption of 3.9
kWh/m®. Analysis of other factors such as the salinity of the feed, motive steam temperature,
difference temperature of HTF and pressure of ORC cycle for the system, will be discussed in next

chapters.
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CHAPTER 4: PERFORMANCE ANALYSIS OF SORC ASSISTED LT-MED COUPLED

WITH MECHANICAL VAPOR COMPRESSION!

4.1 Introduction

In this chapter, the feasibility and performance of a solar-supercritical ORC-LT-MED-
MVC are analyzed for the high concentration brine feed (100,000 ppm) in an effort to reduce the
energy consumption of a desalination system. The impact of the number of MED effects has been
analyzed as a design point on the solar collector area, specific energy consumption by MVC, the
efficiency of system, specific thermal energy consumption and the specific area of MED. Also, the
impact of varying the motive steam temperature, the pressure of the power cycle and the salinity

of the feed has been investigated on the proposed system at 14 effects.

4.2 Methodology

A steady state numerical model was developed in MATLAB to analyze the proposed
system. The system has four main components: the solar field, the supercritical ORC, the multi-
effect desalination (MED), and the mechanical vapor compressor (MVC). The process description
has been introduced in chapter 3 section 3.2. The preliminary design parameters are listed in Table

14.

! The material in this chapter has been previously published in the following paper: Almatrafi, E., Moloney, F., and Goswami, D. Y., 2018,
Performance Analysis of Solar Thermal Powered Supercritical Organic Rankine Cycle Assisted Low-Temperature Multi Effect Desalination
Coupled with Mechanical Vapor. Compression, ASME. Paper presented at the ASME Power Conference, Lake Buena Vista, FL, USA

54

www.manaraa.com



Table 14 Preliminary design parameters for proposed system.

Parameter Value
Solar Subsystem

Designed solar insolation, G, W/m? 1000
Ambient temperature, T,, °C 25
ETC model ESC V18 specifications[81]

The optical efficiency of solar collector, 1,,% 64.2
Heat transmission coefficient, a;, W/m2.K 0.89
Heat transmission coefficient, a, W/m?2.K? 0.001
Area of the collector, Acoliector, M? 3
Designed mass flow rate in a collector, Mytc, I/min 6
Heat transfer fluid, HTF Tyfocor Ls[82]

Designed high HTF temperature, Tou, °C 150
Designed low HTF temperature, Tjp, °C 105
Specific heat capacity of HTF at Tayg, ki/kg.cC[82] 3.97
Supercritical ORC Subsystem

Effectiveness of heat exchanger boiler and condenser, % 95
Designed pinch in heat exchanger boiler and condenser, °C 5
High pressure cycle, P, MPa 5
Efficiency of turbine and pump, % 85
Condensation temperature, Tcong, °C 41
LT-MED Subsystem

Intake seawater temperature, Tew, °C 30
Rejected brine temperature, Ty, °C 40
Motive Steam temperature, Ts, °C 60
Temperature in the last effect, Ty, °C 40
The distillated flow rate, m, , kg/s 11.04
Salinity of the intake seawater, Xz, ppm 100,000
Salinity of the rejected brine in last effect, X, ppm 200,000
MVC Subsystem

Efficiency of MVC, nyyc, % 85

Since the feed has a higher salinity than 100,000 ppm, the sea water package library

developed by Shargawi et. al could not be used to determine the properties of the seawater and

brine, accounting for salinity and temperature [87,88]. So, the BPE, which represents the

difference in temperature between fresh water and saline water due to salinity, and the constant

specific heat of the saline water was calculated by Eq. 26 and Eq. 27.

BPE = 0.33 x exp(4X),where X in %
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¢y, = 4.187 * (1 — X(0.57 — 0.0018(Tyy — 20))),Tsatin °C 27)

4.3 Performance Parameters

The following parameters were considered in order to evaluate the performance of the
proposed SORC-LT-MED-MVC system when the number of effects is increased from 4 to 16 for
the conditions shown in the preliminary tables. Also, the effects of varying the upper pressure of
the ORC from 4 MPa to 6 MPa, the salinity of the feed from 50,000 to 120,000 ppm, and the
temperature of motive steam for 14 effects were analyzed.

The specific heat transfer area (sA) is described in Eq. 28 as the total area of the effects
and feed pre-heater per unit mass of the distillated water production (m?-s/kg) as defined in chapter
3. The specific energy consumption (ws,), describes the energy consumed by MVC in kWh over
the total volumetric production of purified water in one hour (Eq. 29). The solar collector area is
defined in Eq. 30. The system efficiency is the net power out of the system over the heat into the
system (Eq. 31). The specific thermal energy is the heat delivered by solar system in kWh over the

total volumetric production of fresh water in hour (Eg. 32).

sA = LEAitm (28)
mq
o pomer = ot (29)
Asorar = 2202 (30)
p = Y (31)
Wipey, = oot (32)
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4.4 Results and Discussions

As shown in Figure 33, the number of effects has a large impact on the solar collector area.
As the number of effects increased from 4 to 16, the solar collector area decreased by about 75%
since the heat required from supercritical-ORC subsystem is decreased due to less work required
my MVC subsystem. The total specific thermal energy delivered by the solar field, as defined by
Eq. 30, was also decreased by the same percentage, decreasing the size and thereby the costs of

the solar field, the heat exchanger boiler, and the pump of the HTF.
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Figure 33 Results for different number of MED effects solar collector area and specific thermal
energy consumption

The specific area of the MED system, which is defined in Eq. 26, is related to the number
of effects in the system. As shown in Figure 34, the specific area increases from about 165 m?-
s/kg for 4 effects to about 1200 m?-s/kg for 16 effects. This change is a result of the decreasing
temperature difference between the motive steam and the vapor formed in the effect since the

thermal load in each effect is considered constant in the model.

57

www.manaraa.com



1400

=
N
o
o

1000

800

600

400

Specific Area of MED (m?-s/kg)

200

0
0 5 10 15 20

Number of Effects

Figure 34 Results for different number of MED effects on specific area of MED subsystem.

The specific energy consumption decreased by about 75% when the number of effects was
increased from 4 to 16 as shown in Figure 35. The reduced mass flow of the vapor formed in the
last effect, caused the MV C to perform less work as the number of effects increased, where the

specific energy consumption is about 3 kWh/m? at 16 effects.
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Figure 35 Results for different number of MED effects on specific energy consumption for MVC
subsystem.

58

www.manaraa.com



The number of effects was set to 14 effects and the pressure of the power cycle was varied
from 4 MPa to 6 MPa, as shown in Figure 36. Since the critical pressure of R152a is 4.52 MPa,
the efficiency increased as the pressure of the cycle increased. In the supercritical region, the
efficiency was increased by more than 8%. However, the optimum pressure was about 5.7 MPa
and the efficiency, which is defined in Eq.29 is 13.55%. For pressures higher than 5.7 MPa, the
increasing work of the pump in ORC was greater than the added work produced in the turbine. As
the net power is increased as a result of the increase in the efficiency of the supercritical ORC, the
total specific thermal energy, and solar area were decreased by about 9%, reducing the size of the
solar system and power cycle as shown as superimposed lines in Figure 36. The pressure of the
ORC and subsequently the efficiency of the cycle had no impact on the specific area of the MED

and specific energy by MVC.
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Figure 36 Pressure of ORC vs. performance parameters as a percent difference from the 4 MPa
case.

When the salinity of feed changed from 50,000-120,000 ppm, the only impact was on the

specific area of MED system which increased by about 25% as illustrated in Figure 37. That
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increase was a result of increasing the boiling point elevation (BPE) in Eq. 24, which decreased
the temperature difference in each effect, requiring more area to process the heat transfer. The
salinity has no effect on the other parameters such as the specific energy consumption as shown in
Figure 37. In contrast, modeling RO in ROSA software that was developed by DOW water and
process solutions studying the effect of increasing the salinity of the feed on the performance of
RO. The results show the specific energy consumption is increased by more than 250% when the
salinity feed is increased to 100,000 ppm as shown in Figure 38. That means RO is more sensitive
to the salinity of the feed from energy point than the proposed system.

25%

20%

15%

10%

5%

pe re & < < < e @ |

0% & 4 ® *® |
405%00 50000 60000 70000 80000 90000 100000 110000 120000 130000

-5% L
Salinity of the feed, ppm

SA, % W_mvc, % A_solar, % W_spc_th, % —®—nl, %

Figure 37 Salinity of the feed vs. performance parameters as a percent difference from the
50,000 ppm case.
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Figure 38 Salinity of the feed vs. specific energy consumption for RO.

Varying the motive steam temperature from 58°C to 72°C by increasing the work of MVC
that defined in Eq.27, representing a LT-MED (<90°C) system, had an impact on the specific area
of the MED system, the specific thermal energy consumption, the specific energy consumption by
MVC, and the solar field area as presented in Figure 39. It had no impact on the efficiency of the
system. The specific area of the MED decreased by almost 60% due to increasing the difference
in temperature of the effect. However, the solar field area, specific thermal energy consumption
and specific energy consumption by the MVC were increased by about 80% due to increasing the

compression ratio which increased the power required by the MVC.
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Figure 39 Motive steam temperature vs. performance parameters as a percent difference from the
motive steam temperature of 58°C case.

4.5 Conclusion and Recommendations

In this chapter, parameters such as the solar collector area, specific area of MED, specific
energy consumption, specific thermal energy consumption and system efficiency were analyzed
for the proposed solar-supercritical ORC-LT-MED-MVC system while increasing the number of
effects from 4 to 14. Also, the impact of varying of the salinity of feed, motive steam temperature
and pressure of ORC have been investigated on 14 effects. The best performance was found for a
system of 14 effects where the system efficiency was about 13.55% with a specific energy
consumption of 3.6 kWh/m?®. Exergy analysis for the system, will be discussed in following

chapter.
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CHAPTER 5: EXERGY ANALYSIS OF SOLAR POWERED SUPERCRITICAL
ORGANIC RANKINE CYCLE ASSISTED MULTI-EFFECT DESALINATION

COUPLED WITH MECHANICAL VAPOR COMPRESSOR!

5.1 Introduction

Based on our own literature survey, no system has been investigated that uses supercritical
ORC powered MED-MVC for low and medium temperature heat sources. The advantage of using
a supercritical ORC as opposed to a subcritical ORC is that the heating process does not go through
the two phase region, creating a better thermal match in the heat exchanger with less exergy
destruction and ultimately a higher cycle efficiency for wet organic fluids. Due to the availability
of low and medium temperature heat sources such as waste heat, solar or geothermal source, we
have proposed a MED-MVC desalination powered by supercritical-ORC.

In this chapter, an exergy analysis is presented for a novel system that couples a solar
energy system and a supercritical organic Rankine cycle with low-temperature multi-effect
desalination assisted by mechanical vapor compressor (solar-supercritical ORC-LT-MED-MVC)
for the treatment of high salinity concentration feed. The effect of the motive steam temperature,
pressure of the power cycle, the salinity of feed, and the number of effects on the exergy

destruction are analyzed.

! The material in this chapter has been previously published in the following paper: Almatrafi, E., Moloney, F., and Goswami, D. Y., (2018).
Exergy Analysis of Solar Powered Supercritical Organic Rankine Cycle Assisted Multi-Effect Desalination Coupled with Mechanical Vapor
Compressor. In U. do M. D. de E. Mecanica (Ed.), Proceedings of ECOS 2018 - The 31st International Conference on Efficiency, Cost,
Optimization, Simulation and Environmental Impact of Energy Systems (pp. 1-12). Guimardes. ISBN: 978-972-99596-4-6
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5.2 Methodology
The innovative desalination system design, as shown in Figure 20, is composed of the
following components:

e Evacuated solar tube collectors supplies the heat source of the proposed system

e Asupercritical organic Rankine cycle (supercritical ORC) with R152a as the working fluid,
where the working fluid is compressed by the pump to a supercritical pressure and is heated
by the heat exchanger boiler to a supercritical temperature

e A mechanical vapor compressor (MVC) that compresses the vapor formed in last effect of
the MED subsystem

e Low temperature multi effect desalination (LT-MED), which is a series of evaporators,
feed pre-heaters and flash boxes where the temperature of the motive steam entering the
first effect is less than 90°C.

A numerical model was created in MATLAB for the proposed desalination system and its
four main components. The solar heat absorbed by the evacuated tube collector subsystem is
transferred by the HTF to the supercritical ORC via the heat exchanger boiler (HXB) as
represented in Figure 20 as the process 1-2. The maximum temperature of the heat transfer fluid
(HTF) was 150 °C. The supercritical ORC serves two purposes: to produce work to run the MVVC
subsystem and to heat the feed (Myrr) entering the first effect of MED.

The vapor formed in the last effect of MED subsystem (Mvn) is mechanically compressed
by the MV C subsystem to pressurize the motive steam and raise its temperature. The motive steam
at saturation temperature (Ts) is then passed through the first effect while the preheated feed fluid
is sprayed into the first effect. The processes of condensation and vaporization continue through

the effects in the MED subsystem producing the required product of fresh water (Mp). At the last
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effect, the vapor formed (Mvn) is sent to the MVC subsystem to continue the cycle and the brine

(M3) is removed.

5.3 Exergy Analysis for Solar-supercritical ORC-MVC-LT-MED System

Exergy analysis is a powerful tool that combines the mass and energy conservation with
the second law of thermodynamics to design a system that operates at the optimum performance.
Whereas the energy for any system is conserved based on the first law of thermodynamics, the
exergy is not. Exergy, or the useful energy, can be destroyed through a process. Therefore,
quantifying the exergy loss has a valuable meaning in economics to minimize the losses or manage
them.

An exergy analysis considers the mass, work and heat inputs and outputs of a specified
system. For a steady state system control volume, the exergy balance equation and exergy

efficiency are defined as:

SEy, — ZEy,,, = Ex, (33)
TEy TEy
Mex = Sgoe = 17 3, (34)

For the solar-supercritical ORC-MVC-LT-MED system, there are four subsystems and five
streams which are the heat transfer fluid (HTF), working fluid (WF), feed saline water (F), rejected
brine (B), and distillate product (D).

5.3.1 Exergy Analysis for the Solar Subsystem

The exergy efficiency for solar thermal collectors is low as the solar radiation is not
completely absorbed by the solar collectors and the energy losses from the surface of the collectors.
Petela performed extensive exergy studies of thermal radiation for solar power utilization and

proposed an expression representing the maximum relative potential of available solar radiation
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energy [91-93]. This term, which is known as the exergy efficiency term and calculated in (Eq.35),

is based on the relation of the temperature of the sun, which is calculated in [94] as 5760 K, and

the temperature of the environment in Kelvin. Multiplying the solar radiation by the exergy

efficiency term and the total area of collectors represent the exergy of the solar energy as Eq.36.

The area of the collectors needed to provide the heat input to the supercritical ORC, is calculated

using equation Eqg.39 which uses the efficiency of the collectors as shown in Eq.37. The exergy

destruction of the solar field is calculated in Eg.41 and the exergy efficiency in Eq.42. All

parameters of the solar subsystem and reference temperature are listed in Table 15.
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Table 15 Preliminary design parameters for solar field subsystem.

Parameter Value
Solar Subsystem

Designed solar insolation, G, W/m? 1000
Ambient temperature, T,, °C 30
Temperature of the sun, K 5760
ETC model ESC V18 specifications

Area of the collector, Acsltector, M? 3
The optical efficiency of solar collector, Nopticai% 64.2
Heat transmission coefficient, a;, W/m2.K 0.89
Heat transmission coefficient, a, W/m?2.K? 0.001
Heat transfer fluid, HTF Tyfocor Ls

Designed high HTF temperature, Ty, ,, °C 150
Specific heat capacity of HTF at Tayg, ki/kg.K 3.97

5.3.2 Exergy Analysis for Supercritical-ORC Subsystem

While the role of the solar subsystem is to deliver the heat required to run the supercritical-
ORC subsystem, the two main roles of the supercritical-ORC subsystem are to provide the work
required by the MVC subsystem through the turbine and pre-heating the feed that enters the first
effect in the MED subsystem through the condenser. This role requires more attention since it’s
interlacing the main three streams in the proposed system, which are heat transfer fluid, working
fluid and feed. Thus, a detailed exergy analysis for each component in supercritical-ORC
subsystem is presented in Eq. 43-46 and the exergy destruction in Eg.47. The properties of the
three streams, the dead states and the preliminary design of the supercritical-ORC subsystem are

listed in Table 16.

EdeXB = MureCppypp <Toutcol —Tin,,, — Taln 7;?:_20;) + Myr(Ahs_y — TyAS3_4) (43)
XdrURBINE MWF(Ah4—5 — Tals,_s) — WTURBINE = MWF * TaAS5_y (44)
XA oNDENSOR — My r(Dhs_g — ToAS5_6) + MF(¢Fin — Y. ) (45)
Xdpymp MWF(Ah6—3 — Talsg_3) + WPUMP = MWF * TaAS3_¢ (46)
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=E +E +E +E (47)

Xdsorc Xdpxp XdTYRBINE XdcONDENSOR Xdpymp

: E
Exout *dsorc
Misore = % =1- I (48)
X X
insoRrc insorc
= Myrpcy. (Toue. = Tin. . — T, In-22tcol (49)
Xingorc HTF*pyrF outcol Mol a g

Table 16 Preliminary design parameters for supercritical- ORC subsystem.

Parameter Value
Effectiveness of heat exchanger boiler and condenser, &, % 95
Designed pinch in heat exchanger boiler, °C 5
Designed pinch in the condenser, °C 4
Efficiency of turbine and pump, % 85
Condensation temperature, Tcong, °C 41
Temperature of the feed intake, Tintake, °C 30
Salinity reference of the feed, X,, ppm 42,000

5.3.3 Exergy Analysis for MVC Subsystem

The turbine output work is used to drive the MVC subsystem to compress the saturated
vapor formed in the last effect of the MED subsystem. The exergy destruction for this process is
described in Eq.50 and the exergy efficiency in Eq.51. Using MV C subsystem avoids major exergy
destruction in MED technology by eliminating the down condenser which contributes the most to
exergy destruction though it reclaims the waste heat from the vapor formed. The MVC subsystem
has one stream which is the saturated vapor entering at low pressure (Pn) and exiting at pressure
(Ps), the saturation pressure of the design motive steam temperature (Ts). The properties of the

MVC subsystem are listed in Table 17.

EdeVC = Mvn(Ah11—12 — TyAs11-12) + Wyye = MvnTaA512—11 (50)
E ou Exd
Miiyye = Exx—t =1- Exﬂ (51)
inmMvc inpmyc
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Table 17 Preliminary design parameters for MVC subsystem.

Parameter Value
MV C subsystem

Efficiency of MVC, nyyc, % 85
Temperature of the saturated vapor in last effect, T, °C 40
Saturated pressure of the vapor in the last effect, P,, kPa 7.385

5.3.4 Exergy Analysis for LT-MED Subsystem

For the MED subsystem, there is no work or heat crossing the boundaries except the mass

transfer of the feed, distillate water and rejected brine. The flow exergy of the distillate water

stream is defined as that of pure water; however, the feed and the rejected brine are considered as

the sum of the chemical and physical exergies that depend on the salinity and the temperature of

the stream. The software package of thermophysical seawater properties was used for salinity less

than 120,000 ppm and temperature of the stream less than 100 °C. The rate of exergy flow related

to the stream is defined in Eg.50 and the flow exergy for feed and brine is shown in Eq.53. Table

18 shows the dead states for the streams and the exergy destruction of MED subsystem is

represented in Eq.56.
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Table 18 Preliminary design parameters for LT-MED subsystem.

Parameter Value
LT-MED Subsystem

Feed temperature, Tg, °C 37
Rejected brine temperature, Tg, °C 40
Distillate temperature, Tp, °C 40
Temperature in the last effect, Ty, °C 40
The distillate flow rate, Mj, , kg/s 11.04
The rejected brine flow rate, My , kg/s 11.04
Recovery Ratio 0.5

5.4 Parameters of Analysis
The following parameters affect the exergy destruction and exergy efficiency for the solar-
supercritical ORC-MVC-LT-MED and were used for parametric analyses:
e Increasing the number of effects in the MED subsystem from 4 — 16 effects
e Varying the temperature of the motive steam entering the first effect in MED subsystem
from 58°C to 90°C
e Increasing the salinity of the feed from 40,000 ppm to 60,000 ppm
e Changing the upper pressure of the supercritical ORC from 4 MPa to 6 MPa
e Varying the temperature of the HTF exiting from heat exchanger boiler from 80 °C to 130
°C
While varying one of the parameters, the other variables are held constant at the
preliminary design parameters shown in Table 19.

Table 19 Preliminary design parameter of the proposed system.

Parameter Value
Temperature of HTF existing HXB entering solar field, Tin_col, °C 110
Temperature of the motive steam entering 1% effect in MED subsystem, Ts, °C 60
Intake feed salinity, Xg, ppm 42,000
High Pressure of supercritical ORC subsystem, P3, MPa 5.7

The exergy efficiency of the proposed system is defined as:
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: TE
_ Exout =1— xdsystem, (58)

N =z -
system Exsun Exsun

XE =E +E +E +E 59
xdsystem xdsolar deORC deVC deED’ ( )

5.5 Results and Discussion

For the design parameters shown in Table 19 and by increasing the number of effects of
the MED subsystem from 4 to 16, the exergy efficiency for the proposed system solar-supercritical
ORC-MVC-LT-MED, based on Eq.56, increases by more than 3.5 times as shown in Figure 40.
This improvement is a result of the decrease of exergy destruction of MED subsystem. The mass
flow rate of the vapor formed in the last effect is decreased by 75% as the number of effects is
increased up to 16 effects. However, this improvement leads to an increase in the surface area of
the effects since the difference in temperature between the vapor and the feed that drives the series

of condensation and vaporization is reduced.
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Figure 40 Impact of increasing the number of effects in MED subsystem on exergy efficiency of
the system.
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Figure 41 Impact of increasing the number of effects in MED subsystem on exergy efficiency of
each subsystems.

The pressure of the ORC working fluid was varied to understand the behaviour of exergy
efficiency of ORC subsystem at subcritical, trans-critical and supercritical ORC. The exergy
efficiency of the proposed system increases by about 9% when the pressure of the ORC is increased
to 5.7 MPa, which is a supercritical condition as shown in Figure 42. Increasing the pressure of
the supercritical ORC beyond 5.7 MPa decreases the exergy efficiency of the cycle slightly
because of increased exergy destruction of the pump. There is no impact of varying the pressure

of supercritical ORC subsystem on other components as Figure 43 and Figure 44.
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Figure 42 Impact of pressure of the ORC subsystem on exergy efficiency of the proposed
system.
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Figure 43 Impact of pressure of the ORC subsystem on exergy efficiency of each subsystem.
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Figure 44 Impact of pressure of the ORC subsystem on percent change in exergy efficiency.

Increasing the motive steam temperature from 58 °C to 90 °C for 14 effects has an impact
on the MV C subsystem and MED subsystem. While it increases the exergy efficiency of the MVC
subsystem slightly by 3%, it decreases the exergy efficiency of MED subsystem by about 60% due
the increase of irreversibility based on Eq.56. That yields to a decrease in the efficiency of the
proposed system from about 3.3% at Ts 58°C to 1.22% at Ts 90°C (Figure 45). Thus, the increase
of temperature of the motive steam has a major impact on the specific area of MED subsystem. As

shown in Figure 46, there is no major impact on the other subsystems.
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Figure 45 Impact of temperature of the motive steam on exergy efficiency of the system.

—o—1ll_solar —®—nll_ SORC —®—nll_MVC —®—nll_MED

100%
._H_H_.—H—.—.—.—.—.—.—._._.
80%
&
c
[<5)
S 60%
= C—0—0—C—C—0—0—0C—0—0—0—0—0—0—0—C—0
L
& 40%
3
x
Ll
20%
0% +——————
55 60 65 70 75 80 85 90 95

Temperature of Motive Steam (°C)

Figure 46 Impact of temperature of the motive steam on exergy efficiency on each subsystem.
For an MED system with 14 effects, increasing the salinity of the feed from 40,000 ppm to
60,000 has a major impact on the MED performance. The exergy efficiency of the proposed system
increases by about 45% if the salinity is increased from 40,000 ppm to 60,000 ppm as shown in

Figure 47. The exergy efficiency of MED subsystem has been increased by almost 50% with no
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major impacts on the other subsystems as shown in Figure 48. The decrease of exergy destruction

of the MED subsystem refers to the increase of the exergy flow of the brine as the salinity increases

more than the exergy flow of the feed based on Eq.53 with the dead state defined in Table 19.
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Figure 47 Impact of salinity of the feed on the exergy efficiency of the system.
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Figure 48 Impact of salinity of the feed on the exergy efficiency of each subsystem.
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Varying the temperature of the HTF in the heat exchanger boiler of the supercritical ORC
subsystem and entering the solar subsystem has a major impact on the performance of the solar
and power cycle subsystems. The exergy efficiency of the proposed system is decreased by about
5% when the temperature of HTF entering the solar subsystem increases from 80 °C to 130°C as
in Figure 49. While the exergy efficiency of the supercritical ORC subsystem decreases about 18%
as the temperature of the HTF is increased, the exergy efficiency of solar subsystem increases from
13% to about 15% when the HTF temperature is increased from 80°C to 130°C as shown in Figure
50. For the solar field subsystem alone, an increase in the HTF temperature decreases the collector
efficiency (Eq.35), increasing the exergy destruction through the solar field. This increases the
area of the collectors by 5% to provide the same constant heat to the supercritical ORC (Eq.37).
The larger collector area increases the exergy provided by the sun by 2%. However, the exergy
output of the solar field is increased by 23%. As the outlet temperature is increased while the heat
into the supercritical ORC is held constant, the temperature difference across the collectors
decreases, therefore the HTF mass flow has to be increased (Eqg.38). This relation between the
supercritical ORC and the solar field causes the exergy of the solar field (Eq.40) to increase with

an increase in the HTF collector outlet temperature despite a decrease in the collector efficiency.
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Figure 49 Impact of temperature of HTF on the exergy efficiency of the system.
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Figure 50 Impact of temperature of HTF on the exergy efficiency of each subsystem.
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Figure 51 Impact of the temperature of HTF on percent increase in exergy efficiency.

The exergy destruction breakdown by components is shown in Figure 52 for 14 effects in
the MED subsystem for the design parameters stated in Table 19. The major exergy destruction
is from the solar subsystem that accounts for about 88% of the total exergy destruction. The
contribution of the MED subsystem for the total exergy destruction is about 7% and the
supercritical ORC subsystem is about 4%. To reduce the system exergy destruction, the solar
subsystem performance can be improved by replacing the solar collectors with parabolic troughs

or a central receiver where the exergy efficiency is about 25%[95].
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Figure 52 Major exergy destruction contributions of each subsystem in 14 effects.

5.6 Conclusion

In this chapter, a detailed exergy analysis of an innovative proposed system that uses a
solar field with a temperature of 150 °C to power a supercritical-ORC driven MV C assisted LT-
MED subsystem was conducted. The exergy efficiency of the proposed system is found to be 3%
at 14 effects and other parameters are listed in Table 19. The major exergy destruction (88%) was
in the solar subsystem. By increasing the number of effects in the MED subsystem from 4 to16,
the exergy efficiency of the MED subsystem is increased by about 250%. The pressure of ORC
subsystem has a major effect on the exergy efficiency when it increases from 4 to 7 MPa. The
optimum pressure was found to be 5.7 MPa, which is in supercritical region. Increasing the
temperature of the motive steam (Ts) decreases the exergy efficiency of the MED subsystem while
increasing the salinity of the feed entering the first effect increases it. An analysis of major exergy
destruction and its contribution to the total exergy destruction was provided in this chapter. In the

following chapter, a cost analysis is presented based on the major findings presented in this paper.
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CHAPTER 6: ENERGETIC AND ECONOMIC COMPARISON OF SOLAR POWERED

MULTI-EFFECTS DESALINATION (MED) WITH DIFFERENT CONFIGURATIONS

6.1 Introduction

Multi effect desalination (MED) may be coupled with solar energy in three configurations;
solar-MED, solar-MED assisted by thermal vapor compressor (TVC) and solar-MED coupled with
mechanical vapor compressor (MVC). Most of the studies in the literature have focused on solar
MED-TVC coupled with a power cycle driven by parabolic trough or central receiver tower system
while a few have discussed MED-MVC.

For solar-MED configuration, different combinations with solar collector types have been
experimentally tested and numerically modelled. Gerofi et al. [56,96] experimentally tested a
system coupling MED with FPC and ETC in Australia for a capacity of 100 m*/day. The unit cost
of water production was $4/m?® for FPC and $5.1/m® for ETC. Using PT, Sharaf et al. [43,97]
modeled two configurations of an MED system with 16 effects where the motive steam was heated
directly from a solar field and a heat exchanger boiler (HXB) or bleeding a stream from the turbine
of the organic Rankine cycle (ORC) condensed in the first effect of the MED. For low capacity
production (100 m®/day), the unit cost of water production was $5.47/m?® and $5.05/m? for the first
and second configurations, respectively. For medium capacity production (5000 m®/day), the cost
dropped to $1.62/m? and $1.87/m? for the first and second configuration, respectively.

In this chapter, three different configurations of MED coupled with a solar field using ETC
are investigated. The design of solar-MED, solar-MED-TVC and solar-SORC-MVC-MED

systems has been presented. A comparison of the performance of innovative design utilizing
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supercritical-ORC powering MED-MVC with conventional solar-MED and solar-MED-TVC is
presented for specific thermal energy consumption, solar field area and cost of unit water produced.
The impact of the number of MED effects has been analyzed on the solar collector area, specific

thermal energy consumption, and the cost of unit water produced.

6.2 Methodology
Multi-effect desalination (MED) can be powered by solar energy in different
configurations where the motive steam (M) entering the first effect of the MED subsystem is
heated totally or partially or compressed by either a thermal or mechanical vapor compressor
resulting in the following systems:
e Solar-MED
e Solar-MED-TVC
e Solar-SORC-MVC-MED
The common input parameters for each three systems are listed in Table 20.

Table 20 Design constraints for MED subsystem.

Parameter Value
Rejected brine temperature, Thrine, °C 40
Motive Steam temperature, Ts, °C 60
Temperature in the last effect, Ty, °C 40
The distillated flow rate, m, , kg/s 30
Salinity of the intake seawater, X, ppm 55,000
Salinity of the rejected brine in last effect, X,, ppm 110,000

Heat input to each configuration is considered to be the thermal power output from the
solar field divided by the effectiveness of the heat exchanger as shown in Eq. 60. The area of the
solar field is found from Eq. 61, which uses the efficiency of the collector found from Eq. 62. The

parameters of the solar subsystem are listed in Table 21.

. Qi .
Qsotar = Tn = Myrp * Courr (Toutcol - Tincol) (60)
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Table 21 Preliminary design parameters for solar subsystem.

Parameter Value
Solar Subsystem
Designed solar insolation, G, W/m? 800
Ambient temperature, T, °C 30
Designed high HTF temperature, Tou, °C 150
Designed low HTF temperature, Ti,, °C 110
Area of the collector, Acitector, M? 3
The optical efficiency of solar collector, Moptical 64.4
Heat transmission coefficient, al 0.89
Heat transmission coefficient, a2, 0.001
Specific heat capacity of HTF at Tayg, kJ/kg. °C 3.97

6.3 Solar-MED

(61)

(62)

(63)

In the solar-MED system, the solar and MED subsystems are connected through a heat

exchanger boiler (HXB) as shown in Figure 53. The solar heat absorbed by the evacuated tube

collectors is transferred by the solar field HTF to the MED subsystem through the HXB. The

maximum temperature of the heat transfer fluid (HTF) is 150°C. The motive steam enters the HXB

as saturated liquid atT,. After that, the motive steam enters the first effect of MED as saturated

vapor atT. The heat input is defined in Eq. 64, where A, is the heat of vaporization. The design

parameters of the solar-MED configuration are listed in Table 22.

Qin = Ms * Ag
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Figure 53 A schematic for solar-MED configuration.

Table 22 Preliminary design parameters for solar-MED configuration.

Parameter Value
HXB Subsystem

Effectiveness 0.9
Latent Heat of Vaporization, A, k/kg 2357.7

6.4 Solar-MED-TVC

The Solar-MED-TVC system configuration is shown in Figure 54. Coupling a thermal
vapor compressor with MED reduces the size of the down condenser in the MED subsystem,
reducing the waste heat loss from the entrained part of the vapor formed in the last effect or other
effects. To utilize this available latent heat, it is mixed with the high pressure and temperature
steam from the HXB through an ejector, where the heat source temperature is 150°C, the pressure
of the motive steam (Pm) is 415.68 kPa, the pressure of the entrained vapor is the saturation
pressure at the temperature of the last effect (Pn), and the pressure of the compressed steam exiting
the ejector is the saturated pressure at the temperature of the first effect (Ps). The ratio of the motive
steam to the entrained vapor which is known as the entrainment ratio (ER) is calculated based on
a formula developed by Al-Juwayhel [71,98] in Eq. 63; the mass flow rate of the high pressure

motive steam of the ejector is calculated in Eq. 64. The heat input through the heat exchanger
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boiler is found using Eq. 65. The design parameters of the solar-MED-TVC configuration are listed

in Table 23.
Ejector
LY § N,
_— I
Feed water Mn] HTF g
_) I
MED HXB Solar
HTFin

Mm Pump | O i

Rejected brine Desalinated water

Figure 54 A schematic for solar-MED-TVC configuration.

Table 23 Preliminary design parameters for solar-MED-TVC configuration.

Parameter Value

HXB Subsystem

Effectiveness 0.9

Latent Heat of Vaporization, A,,, kJ/kg 2129.2

Ejector Subsystem

Motive Steam Pressure, P, kPa 415.68

Motive Steam Temperature, Tm, °C 145

Entrained Vapor Pressure, Py, kPa 7.3851

Entrained Vapor Temperature, Ty, °C 40

Compressed Steam temperature, Ts, °C 60

Compressed Steam Pressure, Ps, kPa 19.947
ER = 0296 « % . (P_m)°-°15 . (3x10—7*(Pm)2—0.0009*Pm+1.6101) (65)

Pt Pp 2X1078%(T),)2—0.0006%Ty+1.0047

My = My (z) (66)
Qin = My * Ay (67)
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6.5 Solar-MED-SORC-MVC

In the solar SORC-MVC-MED configuration, the vapor formed in the last effect of the
MED subsystem (M,,) is mechanically compressed by the MVC subsystem. Then, the motive
steam at saturation temperature (T,) is passed through the first effect and the processes of
condensation and vaporization continue through the effects in the MED subsystem. The net power
of the cycle is defined as the difference between the turbine output and the pump input work and
is sized to meet the total work required by the MV C in the desalination system, as defined in Eq.
68. The solar heat is transferred by the HTF to the supercritical ORC via the HXB as represented
in Figure 55 as the process 4-1. The maximum temperature of the heat transfer fluid (HTF) was
set to 150 °C, as in the prior systems, and the turbine inlet conditions were selected to meet the
pinch point criteria and to optimize cycle efficiency at 145°C (T1) and 5.7 MPa (P1). The heat input
is defined in Eq. 69.
Wnet = Wt - Wp = mWF[(hZ —hy) — (hs — h4)] (68)
Qin = 1yyrlhy — hyl (69)

Table 24 Preliminary design parameters for solar-SORC-MVC-MED configuration.

Parameter Value
Supercritical ORC Subsystem

Effectiveness of heat exchanger boiler and condenser, % 90
Designed HXB pinch point, °C 5
Designed condenser pinch point, °C 6
High Pressure of SORC, MPa 5.7
Isentropic efficiency of turbine and pump, % 85
Condensation temperature, Tcong, °C 41
WEF turbine inlet temperature, T4, °C 145
WF turbine inlet pressure, P1, MPa 5.7
Working Fluid R152a
MVC Subsystem

MVC efficiency, nyyc, % 85
Motive Steam Pressure, Ps, kPa 19.947
Last Effect VVapor Pressure, Pn, kPa 7.3851
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Figure 55 A schematic for solar-MED-SORC-MVC-MED configuration.

6.6 Multi Effect Desalination (MED) Validation

A steady state numerical model was developed in MATLAB to analyze the proposed
system. Preheated forward feed LT-MED consists of a series of evaporators, preheaters and flash
boxes where the feed and the formed vapor move in the same direction through the effects, as
shown in Figure 56. The feed is moving from one effect to another due to the difference in pressure
and the vapor is condensed in each effect at a pressure higher than the pressure set in the effect.

The MED subsystem was validated in our prior work [99].

Figure 56 A schematic for MED subsystem.
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Considering energy balance, mass balance, and material balance in the system a detailed
model of MED was developed in MATLAB. To analyze the thermophysical properties of the
working fluid (WF) and pure water, REFPROP was used. For the seawater thermophysical
properties, a library developed by Al-Shargawi et al. [87,88] was used to determine the properties
of the seawater and brine, accounting for salinity and temperature.

The following assumptions were used in the model:

Steady state

e Thermal losses and vapor leaks to the environment are negligible

e The vapor formed in the effects contains no salt

e The demister has negligible effect on pressure drop

e The brine, feed, and distillate are in the saturated liquid phase in each effect

The MED subsystem has been validated with two models that were developed by El-Sayed

[100] and Mistry et. al. [85] as shown in Figure 57. By varying the number of effects, the
performance ratio of the MED subsystem, defined in Eq. 70 as the mass ratio of water produced

to motive steam (Eq. 71) was compared for the three models.

_ Mp
PR= - (70)
Mg = [My % (Ty = Tp) + mig * 441/ (71)
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Figure 57 Validation of MED subsystem with El-Sayed [104] and Mistry et al., [85] model.

6.7 Performance Parameters

The specific thermal energy consumption and cost of water produced were considered in
order to evaluate the performance of the three different MED configurations when the number of
effects is increased from 4 to 16 for the conditions shown in the preliminary tables. These two
parameters are the best indicators for which configuration is more useful to utilize the solar

produced fresh water.

6.7.1 Specific Thermal Energy Consumption

Specific thermal energy is the heat delivered by the solar system in kWh over the total
volumetric production of fresh water per hour (Eq. 72). The heat input for the three configurations

is defined in equations 64, 66 and 69.

Wepey, = 22 (72)

SPCth Vi
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6.7.2 Cost of Water Production

The cost of water production for each configuration is based on the capital cost of
components in the configuration.

The cost of solar collector is calculated based on the solar collector area. For parabolic
trough collector, Palenzuela et al. estimated the cost of solar collector as 150 $/m? [28]. Kouta et
al. calculated the cost of solar tower as 330 $/m? [69]. For evacuated tube collectors, Mario et al.
[101] estimated the cost of ETC as 680 $/collector, for a 3m? collector. In this analysis, ETC was
considered at this cost (Eq. 73).

Csotar = 226.67 * Asolar (73)

The cost of heat exchanger and condenser is calculated by Eq. 74 based on the area and the
log mean temperature difference (LMTD), defined in Equations 75 and 76, respectively. The

coefficient of heat removal was set to 1000 W/m?/K [66].

CHXB/cond = 150 = AHXB/cond&8 (74)

AHXB/cond = UsLMTD (75)

LMTD = TnizTeg) (ho=Te) (76)
ln(Th:o_Tc,i

The costs of the turbine (Eqg. 77) and the pump (Eq. 78) are calculated based on the net
power [66]. Selection of the supercritical expander is considered one of the key factors. Quoilin et
al. optimized the selection of a radial turbine over screw and scroll expanders for the power range

of 100-1000 KW[102].

Crurbine = 4750 x W,*7° (77)

Cpump = 3500 x W, (78)
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The capital cost of the supercritical-ORC is defined as the sum of the costs of its
components as shown in Eq.79.
Csorc = Cuxs + Coump + Crurbine + Ceona (79)
The capital cost of the feed preheater (Eg. 80) in the MED subsystem is estimated based

on the heat transfer area. The area is calculated in Eg. 81 and heat coefficient is defined as Eq.

82[38,100].

Cry = 1000 * (12.86 + A7, ") (80)

Apy = T Mpscp #(Tfp = Trp-1) 81)
Ufp*LMTD

Upp = 1.6175 4 0.1537 * 1073 = T; — 0.1825 * T;” — 80.26 * 107 = T;® (82)

The capital cost of the effects in the MED subsystem is calculated in Eqg. 83 and is based
on the heat input in each effect and the difference of the temperature and the pressure drop in each
effect. The heat input in each effect is defined in Eq. 84. The pressure drop in the shell side is set

at 0.045 kPa, and the pressure drop in tube side is set at 0.205 kPa [38,100].

Cafpects = 430 * 0.582 ( Qe ) (83)

ATp*dPt0-01+dps0-1

Qe = M * A + X7 my + 4 (84)
The capital cost of MED subsystem is the sum of the capital cost of the effects and feed

preheaters (Eg. 85). That cost has been estimated by IDA Desalination Yearbook as

$1230/(m®/day) based on the data base [15,28].

Cymep = CEffects + Cry (85)
The ejector cost is represented in Eq. 86 and the cost of MVC is shown in Eq. 87 [11,18].

The pressure of the motive steam, entrained vapor pressure, mass flow rate of the motive steam,

and the efficiency of MV C are listed in Table 23 and Table 24.
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. 7,)0-05 p,, \~075
Crjector = 1500 * 0.45 * M, » (P—n) . () (86)

Corve = 7364 % M, * (:;)1 * (M)w (87)

n 1-nmvce

The amortization factor, which is defined in Eq. 88, is based on the data listed in Table 25
and represents how much of the total capital cost of the system will be paid per year based on the

interest rate and the life time of the plant.

. , _ _ irate*(1+irate)LTP
Amortization Factor = AF = (o)l TP 1 (88)

The operation and maintenance cost for the solar subsystem is calculated based on EQq.89.
It is estimated by South Africa CSP to account 10-11 % of the initial cost[103].
Solarygy = 0.15 * Cgp10r (89)

The unit product cost in $/m?® for each configuration is given in Egs. 90-92.

Csolar+CmED+CHxB+S0larogm
TWP _ = AF = (=2 90
solar—MED ( 8760+AV}, ) ( )
CsolartCMED+CHXB+CEjectortSolarosm
TWPso1ar—mep-Tve = AF * ( ) (91)
8760*A+Vp,

CsolartCMmED+Csorc+Cmyct+Solarogam
*
AR ( A ) (92)

TWPgo1ar-sorc-mvc-MED =

Table 25 Cost data inputs.

Parameter Value
Amortization Factor, 1/y

Interest rate, i,.4zc, % 8.3
Annual Availability, A, 0.3
Life Time Plant, LTP, years 25
Hourly Water Production, V;,, m%h 108

6.8 Parameters of Analysis
Increasing the number of effects in the MED subsystem from 4 — 16 effects has been

investigated. The other variables are held constant as shown in Table 26.
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Table 26 Preliminary design parameter of the proposed system.

Parameter Value
Temperature of HTF existing HXB entering solar field, Tin col, °C 110
Temperature of the motive steam entering 1% effect in MED subsystem, Ts, °C 60
Intake feed salinity, Xg, ppm 42,000
High Pressure of supercritical ORC subsystem, P3, MPa 5.7

6.9 Results and Discussion

The three different configurations of MED were analyzed for the performance parameters
explained above holding the parameters listed in Table 21 to Table 24 as constant and changing
the number of effects from 4 to 16.

The specific thermal energy consumption for solar-MED, solar-MED-TVC and solar-
SORC-MVC-MED is decreased by almost 70% when the number of effects is increased from 4 to
16 (Figure 58). This decrease is a result of decreasing the amount of vapor produced in the first
effect when the number of effects is increased. This leads to a decrease in the mass flow rate of
the motive steam entering the first effect.

The solar-MED-TVC and solar-SORC-MVC-MED have a clear advantage over the simple
solar-MED configuration regarding energy consumption. The solar-MED configuration consumed
about double the power of the other configurations. The specific thermal energy consumption of
solar-SORC-MVC-MED configuration is lower than the solar-MED-TVC by almost 15%, which
is a clear advantage to utilize waste heat or geothermal or solar driven supercritical-ORC or work
from an existing power plant compressing the vapor instead of vaporizing the motive steam as

shown in Figure 58.
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Figure 58 Specific thermal energy consumption vs. number of effects in MED subsystem.

The size of the solar field has a major impact on the cost of the different MED
configurations. When the number of effects is increased, resulting in reduced heat input, the solar

field decreases as shown in Figure 59.

5 % 10*
*\ =W = Solar-SORC-MVC-MED
45F =W = Solar-MED-TVC
N - W = Solar-MED
.
i1 w
_— s §
“E3st ‘v
a 3 \v‘
E 2 SI\ “ ; "-
'5: - -
}.E Y ‘. '-‘ -
— 2k LY b v«-..
@ V. % .. .
L5f "“‘;:.*v ~v H""T-—v
L SO S -
L Ve ¥ -w-.
| VIV ¥Ry
0.5 : ' - ' -

4 6 8 10 12 14 16
Number of Effects

Figure 59 Solar collector area vs. number of effects in MED subsystem.
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The cost to produce 1 m? for each configuration is defined in Egs. 88-90 and shown in
Figure 60. The trend of reduction in the cost as the number of effects increase is obvious. This
decrease in cost results mainly from reducing the size of solar field shown in Figure 59. The cost
of unit product for solar-MED configuration decreases from about $3.4/m3 to $2.1/m?® when the
number of effects is increased from 4 to 16. For solar-MED-TVC and solar-SORC-MVC-MED
configurations, the cost is dropped from about $2.25/m?* to $1.8/m* when the number of effects is
increased from 4 to 16.

The decrease of the cost for solar-MED configuration is clear due to the reduced solar field
size which has the major impact, however, the reduction in the unit cost for solar-MED-TVC and
solar-SORC-MVC-MED is not that clear. As the number of effects is increased from 4 to 6, the
cost is dropped by about 6% with slight advantage for solar-MED-SORC-MVC-MED over solar-
MED-TVC. After that, the cost remains around $2 /m?* as the number of effects is increased from
6 to 13. After that, the cost for both configurations is dropped by almost 12% as the effects increase

to 16 with a slight advantage for solar-MED-TVC as shown in Figure 60.
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Figure 60 Cost of water production for three different configuration variations as number of
effects.

For the solar-MED configuration, the cost break-down is shown in Figure 61 and is broken
down into each subsystem for when the number of effects is increased from 4 to 16. Although the
impact of the HXB subsystem is very small, the cost drops by almost 60% due to the decreased
area of the HXB defined in Eq. 16. After the 7™ effect, the cost of MED subsystem increases by
almost 60% due to the increase of the specific area of MED subsystem as the difference of the
temperature across the effects decreases (Eq. 83). However, the decrease in the cost of the solar
field is less than the increase in the cost of the MED subsystem as the number of effects increases,

reducing the total cost of the system.
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Figure 61 Cost breakdowns of solar-MED configuration showed the contribution of each
subsystem as the number of effects increased.

For the solar-MED-TVC configuration, the cost breakdowns of the unit produced are
shown in Figure 62 based on each component. While the costs of the ejector subsystem and HXB
have a small impact, as the number of effects increased from 4 to 16, the cost of both components
reduced by almost 65% due to the area of the HXB and the reduced mass flow rate of the motive
steam for ejector as illustrated in Eq. 84. After the 5" effect, the increasing cost of the MED
subsystem keeps the total cost from going down even though the cost of solar subsystem is
decreased. After the 12" effect, the cost of MED subsystem is decreased due to the reduced heat
input delivered to the effects (Eq. 85) and the small size of the down condenser in comparison with

the solar-MED system.
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Figure 62 Cost breakdowns of solar-MED-TVC configuration showed the contribution of each

subsystem as the number of effects increased.
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For the solar-SORC-MVC-MED configuration, the cost of each subsystem is shown in
Figure 63. The cost of the MVC subsystem drops by almost 75% due to the decreasing mass flow
rate from the last effects as the number of effects is increased from 4 to 16 effects. However, it has
little impact on the total cost of the system. While the cost of supercritical ORC subsystem is
decreased as the number of effects is increased, the cost of MED subsystem is increased accounting

for the majority of the cost for systems with more than 5 effects.
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Figure 63 Cost breakdowns of solar-SORC-MVC-MED configuration showed the contribution
of each subsystem as the number of effects increased.

6.10 Conclusion

In this chapter, three different configurations of MED plants powered by low temperature
solar heat, where the motive steam is heated fully in solar-MED configuration or partially in solar-
MED-TVC configuration or compressed through MVC coupled with supercritical-ORC in solar-
SORC-MVC-MED configuration, have been analyzed. The solar-SORC-MVC-MED has a clear
advantage in the specific thermal energy consumption and the size of the solar field over other
configurations and a slight advantage on the cost of production over the solar-MED-TVC.

The impact of increasing the number of effects on the three configurations has been
presented. The specific thermal energy consumption for each configuration decreases as the
number of effects is increased. At 14 effects, solar-MED configuration consumed about 60
kWh/m®, where the solar-MED-TVC configuration consumed about 35 kWhu/m?® and solar-

SORC-MVC-MED configuration consumed about 29 kWhm/m?,
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The cost of water production for the solar-MED configuration reduced from $3/m? at 4
effects to almost $2/m? at 16 effects. The solar-MED configuration is more sensitive to the cost of
the solar field. On the other hand, the solar-MED-TVC and solar-SORC-MVC-MED systems are
more sensitive to the cost of the MED subsystem. The cost of unit water production for both
configurations is varied from $2/m? at 4 effects to $1.75/m? at 16 effects. The cost breakdowns for

each configuration based on the cost of their components has been presented.
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CHAPTER 7: CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK

The process of desalination is an energy intensive process which typically comes from
fossil fuels, with high carbon emissions. It was estimated by Kalogirou et al. that the production
of 1,000 m? daily requires about 10,000 tons of oil per year [104,105]. Therefore, using renewable
energy in desalination instead of fossil fuels is considered one of the valuable solutions to the
demand for water and a clean environment. An innovative thermal desalination system was
proposed and analyzed. This proposed system is a co-generation plant that can produce power and
desalination from a low-grade heat source with a supercritical-ORC and a MED-MVC thermal
desalination system. The impact of the number of effects, motive steam temperature, salinity of
the feed for the MED subsystem, temperature difference of the HTF for the solar subsystem, and
pressure of the working fluid for the ORC subsystem were the major parameters that have been
investigated. Performance ratio, specific energy consumption and cost of unit produced were
analyzed for the proposed solar-supercritical ORC-LT-MED-MVC system while changing other
parameters. The best performance was found for a system of 14 effects where the system efficiency
was about 16% with a performance ratio of MED greater than 9 and a specific energy consumption
of 3.9 kWh/m?. A detailed exergy analysis of the innovative proposed system was conducted. The
exergy efficiency of the proposed system is found to be 3% at 14 effects. The major exergy
destruction was in the solar subsystem. The optimum pressure was found to be 5.7 MPa, which is
in supercritical region. Increasing the temperature of the motive steam (Ts) decreases the exergy
efficiency of MED subsystem while increasing the salinity of the feed entering the first effect

increases it. Three different configurations of MED plants powered solar heat have been analyzed.
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The solar-SORC-MVC-MED has a clear advantage in the specific thermal energy consumption
and the size of the solar field over other configurations and a slight advantage on the cost of
production over the solar-MED-TVC. At 14 effects, solar-MED configuration consumed about 60
kWhu/m®, where the solar-MED-TVC configuration consumed about 35 kWhu/m?® and solar-
SORC-MVC-MED configuration consumed about 29 kWh/m?3. The cost of water production for
the solar-MED configuration reduced from $3/m? at 4 effects to almost $2/m?® at 16 effects. The
solar-MED configuration is more sensitive to the cost of the solar field. On the other hand, the
solar-MED-TVC and solar-SORC-MVC-MED systems are more sensitive to the cost of the MED
subsystem. The cost of unit water production for both configurations is varied from $2/m? at 4
effects to $1.75/m? at 16 effects. The cost breakdowns for each configuration based on the cost of
their components has been presented.

In future work, more organic working fluids could be investigated for higher temperature
heat sources for supercritical-ORC. Criteria for a selection working fluid and power scheme could
be proposed to drive a thermal desalination. Coupling the proposed system to be the bottom cycle
of sCO- Brayton cycle might have a potential to supply water and power for communities in arid
regions. Applying low thermal energy storage to store the waste sensible heat from rejected brine
in artificial bonds to preheat the feed incoming to MED subsystem could increase the efficiency
of ORC subsystem and minimize the thermal pollution of the desalination plants that affect marine

life.
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Appendix A. List of Symbols

avg

BPE
Cp

DSG
ETC

zs2>03
(@)

95}

SORC

X%.Q-C’ﬂ(_fi(_fuiﬁ

< € >3 m

Nomenclature

heat transmission coefficient (W/m2.K)

area (m?)

average

brine mass flow (kg/s)
boiling point elevation
Specific heat (kJ/kg-K)
direct steam generated
evacuated tube collector
flat plate collector

solar insolation (kW/m?)
enthalpy (kJ/kg)

mass flow (kg/s)

molar fraction

number of collectors
performance ratio
entropy, kJ/kg-K

supercritical organic Rankine cycle
specific heat transfer area (m?-s/kg)

solar pond
solar tower
temperature (K)

heat transfer coefficient (KW/K.m?)

heat rate (kW)
power (kW)
Salinity of the feed (ppm)

Greek Letters

effectiveness
efficiency

latent heat (kJ/kg)
exergy factor
exergy flow, kJ/kg
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e Subscripts

1,.n-1 number of effect
a ambient
atm atmospheric
br brine
col collector
cw intake seawater

total distillated water

effect
f feed
fth feed heater
fl flash
fs saturated liquid from the first effect
h hour
HTF heat transfer fluid
HXB heat exchanger boiler
MED multi effects desalination
MVC mechanical vapor compressor
mix mixture
n last effect
0 dead state
op optical efficiency
ORC organic Rankine cycle
p pump
ph physical
S steam
sat saturation
spc specific energy consumption
t turbine
v vapor
vn saturated vapor from the last effect
VS superheated vapor
WF working fluid
W water
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